This commit relaxes Mem2Reg's type equality requirement for the LLVM dialect's load and store operations. For now, we only allow loads to be promoted if the reaching definition can be casted into a value of the target type. For stores, the same conversion casting check is applied and we ensure that their result is properly casted to the type of the memory slot. This is necessary to satisfy assumptions of the general mem2reg pass, as it creates block arguments with the types of the memory slot. This relands https://github.com/llvm/llvm-project/pull/87504
1250 lines
46 KiB
C++
1250 lines
46 KiB
C++
//===- LLVMMemorySlot.cpp - MemorySlot interfaces ---------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements MemorySlot-related interfaces for LLVM dialect
|
|
// operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Interfaces/DataLayoutInterfaces.h"
|
|
#include "mlir/Interfaces/MemorySlotInterfaces.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
#define DEBUG_TYPE "sroa"
|
|
|
|
using namespace mlir;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interfaces for AllocaOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
llvm::SmallVector<MemorySlot> LLVM::AllocaOp::getPromotableSlots() {
|
|
if (!getOperation()->getBlock()->isEntryBlock())
|
|
return {};
|
|
|
|
return {MemorySlot{getResult(), getElemType()}};
|
|
}
|
|
|
|
Value LLVM::AllocaOp::getDefaultValue(const MemorySlot &slot,
|
|
RewriterBase &rewriter) {
|
|
return rewriter.create<LLVM::UndefOp>(getLoc(), slot.elemType);
|
|
}
|
|
|
|
void LLVM::AllocaOp::handleBlockArgument(const MemorySlot &slot,
|
|
BlockArgument argument,
|
|
RewriterBase &rewriter) {
|
|
for (Operation *user : getOperation()->getUsers())
|
|
if (auto declareOp = llvm::dyn_cast<LLVM::DbgDeclareOp>(user))
|
|
rewriter.create<LLVM::DbgValueOp>(declareOp.getLoc(), argument,
|
|
declareOp.getVarInfo(),
|
|
declareOp.getLocationExpr());
|
|
}
|
|
|
|
void LLVM::AllocaOp::handlePromotionComplete(const MemorySlot &slot,
|
|
Value defaultValue,
|
|
RewriterBase &rewriter) {
|
|
if (defaultValue && defaultValue.use_empty())
|
|
rewriter.eraseOp(defaultValue.getDefiningOp());
|
|
rewriter.eraseOp(*this);
|
|
}
|
|
|
|
SmallVector<DestructurableMemorySlot> LLVM::AllocaOp::getDestructurableSlots() {
|
|
if (!mlir::matchPattern(getArraySize(), m_One()))
|
|
return {};
|
|
|
|
auto destructurable = dyn_cast<DestructurableTypeInterface>(getElemType());
|
|
if (!destructurable)
|
|
return {};
|
|
|
|
std::optional<DenseMap<Attribute, Type>> destructuredType =
|
|
destructurable.getSubelementIndexMap();
|
|
if (!destructuredType)
|
|
return {};
|
|
|
|
return {DestructurableMemorySlot{{getResult(), getElemType()},
|
|
*destructuredType}};
|
|
}
|
|
|
|
DenseMap<Attribute, MemorySlot>
|
|
LLVM::AllocaOp::destructure(const DestructurableMemorySlot &slot,
|
|
const SmallPtrSetImpl<Attribute> &usedIndices,
|
|
RewriterBase &rewriter) {
|
|
assert(slot.ptr == getResult());
|
|
rewriter.setInsertionPointAfter(*this);
|
|
|
|
auto destructurableType = cast<DestructurableTypeInterface>(getElemType());
|
|
DenseMap<Attribute, MemorySlot> slotMap;
|
|
for (Attribute index : usedIndices) {
|
|
Type elemType = destructurableType.getTypeAtIndex(index);
|
|
assert(elemType && "used index must exist");
|
|
auto subAlloca = rewriter.create<LLVM::AllocaOp>(
|
|
getLoc(), LLVM::LLVMPointerType::get(getContext()), elemType,
|
|
getArraySize());
|
|
slotMap.try_emplace<MemorySlot>(index, {subAlloca.getResult(), elemType});
|
|
}
|
|
|
|
return slotMap;
|
|
}
|
|
|
|
void LLVM::AllocaOp::handleDestructuringComplete(
|
|
const DestructurableMemorySlot &slot, RewriterBase &rewriter) {
|
|
assert(slot.ptr == getResult());
|
|
rewriter.eraseOp(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interfaces for LoadOp/StoreOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool LLVM::LoadOp::loadsFrom(const MemorySlot &slot) {
|
|
return getAddr() == slot.ptr;
|
|
}
|
|
|
|
bool LLVM::LoadOp::storesTo(const MemorySlot &slot) { return false; }
|
|
|
|
Value LLVM::LoadOp::getStored(const MemorySlot &slot, RewriterBase &rewriter) {
|
|
llvm_unreachable("getStored should not be called on LoadOp");
|
|
}
|
|
|
|
bool LLVM::StoreOp::loadsFrom(const MemorySlot &slot) { return false; }
|
|
|
|
bool LLVM::StoreOp::storesTo(const MemorySlot &slot) {
|
|
return getAddr() == slot.ptr;
|
|
}
|
|
|
|
/// Checks that two types are the same or can be cast into one another.
|
|
static bool areCastCompatible(const DataLayout &layout, Type lhs, Type rhs) {
|
|
return lhs == rhs || (!isa<LLVM::LLVMStructType, LLVM::LLVMArrayType>(lhs) &&
|
|
!isa<LLVM::LLVMStructType, LLVM::LLVMArrayType>(rhs) &&
|
|
layout.getTypeSize(lhs) == layout.getTypeSize(rhs));
|
|
}
|
|
|
|
/// Constructs operations that convert `inputValue` into a new value of type
|
|
/// `targetType`. Assumes that this conversion is possible.
|
|
static Value createConversionSequence(RewriterBase &rewriter, Location loc,
|
|
Value inputValue, Type targetType) {
|
|
if (inputValue.getType() == targetType)
|
|
return inputValue;
|
|
|
|
if (!isa<LLVM::LLVMPointerType>(targetType) &&
|
|
!isa<LLVM::LLVMPointerType>(inputValue.getType()))
|
|
return rewriter.createOrFold<LLVM::BitcastOp>(loc, targetType, inputValue);
|
|
|
|
if (!isa<LLVM::LLVMPointerType>(targetType))
|
|
return rewriter.createOrFold<LLVM::PtrToIntOp>(loc, targetType, inputValue);
|
|
|
|
if (!isa<LLVM::LLVMPointerType>(inputValue.getType()))
|
|
return rewriter.createOrFold<LLVM::IntToPtrOp>(loc, targetType, inputValue);
|
|
|
|
return rewriter.createOrFold<LLVM::AddrSpaceCastOp>(loc, targetType,
|
|
inputValue);
|
|
}
|
|
|
|
Value LLVM::StoreOp::getStored(const MemorySlot &slot, RewriterBase &rewriter) {
|
|
return createConversionSequence(rewriter, getLoc(), getValue(),
|
|
slot.elemType);
|
|
}
|
|
|
|
bool LLVM::LoadOp::canUsesBeRemoved(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
if (blockingUses.size() != 1)
|
|
return false;
|
|
Value blockingUse = (*blockingUses.begin())->get();
|
|
// If the blocking use is the slot ptr itself, there will be enough
|
|
// context to reconstruct the result of the load at removal time, so it can
|
|
// be removed (provided it loads the exact stored value and is not
|
|
// volatile).
|
|
return blockingUse == slot.ptr && getAddr() == slot.ptr &&
|
|
areCastCompatible(dataLayout, getResult().getType(), slot.elemType) &&
|
|
!getVolatile_();
|
|
}
|
|
|
|
DeletionKind LLVM::LoadOp::removeBlockingUses(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
RewriterBase &rewriter, Value reachingDefinition) {
|
|
// `canUsesBeRemoved` checked this blocking use must be the loaded slot
|
|
// pointer.
|
|
Value newResult = createConversionSequence(
|
|
rewriter, getLoc(), reachingDefinition, getResult().getType());
|
|
rewriter.replaceAllUsesWith(getResult(), newResult);
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::StoreOp::canUsesBeRemoved(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
if (blockingUses.size() != 1)
|
|
return false;
|
|
Value blockingUse = (*blockingUses.begin())->get();
|
|
// If the blocking use is the slot ptr itself, dropping the store is
|
|
// fine, provided we are currently promoting its target value. Don't allow a
|
|
// store OF the slot pointer, only INTO the slot pointer.
|
|
return blockingUse == slot.ptr && getAddr() == slot.ptr &&
|
|
getValue() != slot.ptr &&
|
|
areCastCompatible(dataLayout, slot.elemType, getValue().getType()) &&
|
|
!getVolatile_();
|
|
}
|
|
|
|
DeletionKind LLVM::StoreOp::removeBlockingUses(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
RewriterBase &rewriter, Value reachingDefinition) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
/// Checks if `slot` can be accessed through the provided access type.
|
|
static bool isValidAccessType(const MemorySlot &slot, Type accessType,
|
|
const DataLayout &dataLayout) {
|
|
return dataLayout.getTypeSize(accessType) <=
|
|
dataLayout.getTypeSize(slot.elemType);
|
|
}
|
|
|
|
LogicalResult LLVM::LoadOp::ensureOnlySafeAccesses(
|
|
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return success(getAddr() != slot.ptr ||
|
|
isValidAccessType(slot, getType(), dataLayout));
|
|
}
|
|
|
|
LogicalResult LLVM::StoreOp::ensureOnlySafeAccesses(
|
|
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return success(getAddr() != slot.ptr ||
|
|
isValidAccessType(slot, getValue().getType(), dataLayout));
|
|
}
|
|
|
|
/// Returns the subslot's type at the requested index.
|
|
static Type getTypeAtIndex(const DestructurableMemorySlot &slot,
|
|
Attribute index) {
|
|
auto subelementIndexMap =
|
|
slot.elemType.cast<DestructurableTypeInterface>().getSubelementIndexMap();
|
|
if (!subelementIndexMap)
|
|
return {};
|
|
assert(!subelementIndexMap->empty());
|
|
|
|
// Note: Returns a null-type when no entry was found.
|
|
return subelementIndexMap->lookup(index);
|
|
}
|
|
|
|
bool LLVM::LoadOp::canRewire(const DestructurableMemorySlot &slot,
|
|
SmallPtrSetImpl<Attribute> &usedIndices,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
if (getVolatile_())
|
|
return false;
|
|
|
|
// A load always accesses the first element of the destructured slot.
|
|
auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0);
|
|
Type subslotType = getTypeAtIndex(slot, index);
|
|
if (!subslotType)
|
|
return false;
|
|
|
|
// The access can only be replaced when the subslot is read within its bounds.
|
|
if (dataLayout.getTypeSize(getType()) > dataLayout.getTypeSize(subslotType))
|
|
return false;
|
|
|
|
usedIndices.insert(index);
|
|
return true;
|
|
}
|
|
|
|
DeletionKind LLVM::LoadOp::rewire(const DestructurableMemorySlot &slot,
|
|
DenseMap<Attribute, MemorySlot> &subslots,
|
|
RewriterBase &rewriter,
|
|
const DataLayout &dataLayout) {
|
|
auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0);
|
|
auto it = subslots.find(index);
|
|
assert(it != subslots.end());
|
|
|
|
rewriter.modifyOpInPlace(
|
|
*this, [&]() { getAddrMutable().set(it->getSecond().ptr); });
|
|
return DeletionKind::Keep;
|
|
}
|
|
|
|
bool LLVM::StoreOp::canRewire(const DestructurableMemorySlot &slot,
|
|
SmallPtrSetImpl<Attribute> &usedIndices,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
if (getVolatile_())
|
|
return false;
|
|
|
|
// Storing the pointer to memory cannot be dealt with.
|
|
if (getValue() == slot.ptr)
|
|
return false;
|
|
|
|
// A store always accesses the first element of the destructured slot.
|
|
auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0);
|
|
Type subslotType = getTypeAtIndex(slot, index);
|
|
if (!subslotType)
|
|
return false;
|
|
|
|
// The access can only be replaced when the subslot is read within its bounds.
|
|
if (dataLayout.getTypeSize(getValue().getType()) >
|
|
dataLayout.getTypeSize(subslotType))
|
|
return false;
|
|
|
|
usedIndices.insert(index);
|
|
return true;
|
|
}
|
|
|
|
DeletionKind LLVM::StoreOp::rewire(const DestructurableMemorySlot &slot,
|
|
DenseMap<Attribute, MemorySlot> &subslots,
|
|
RewriterBase &rewriter,
|
|
const DataLayout &dataLayout) {
|
|
auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0);
|
|
auto it = subslots.find(index);
|
|
assert(it != subslots.end());
|
|
|
|
rewriter.modifyOpInPlace(
|
|
*this, [&]() { getAddrMutable().set(it->getSecond().ptr); });
|
|
return DeletionKind::Keep;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interfaces for discardable OPs
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Conditions the deletion of the operation to the removal of all its uses.
|
|
static bool forwardToUsers(Operation *op,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses) {
|
|
for (Value result : op->getResults())
|
|
for (OpOperand &use : result.getUses())
|
|
newBlockingUses.push_back(&use);
|
|
return true;
|
|
}
|
|
|
|
bool LLVM::BitcastOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return forwardToUsers(*this, newBlockingUses);
|
|
}
|
|
|
|
DeletionKind LLVM::BitcastOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::AddrSpaceCastOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return forwardToUsers(*this, newBlockingUses);
|
|
}
|
|
|
|
DeletionKind LLVM::AddrSpaceCastOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::LifetimeStartOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return true;
|
|
}
|
|
|
|
DeletionKind LLVM::LifetimeStartOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::LifetimeEndOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return true;
|
|
}
|
|
|
|
DeletionKind LLVM::LifetimeEndOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::InvariantStartOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return true;
|
|
}
|
|
|
|
DeletionKind LLVM::InvariantStartOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::InvariantEndOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return true;
|
|
}
|
|
|
|
DeletionKind LLVM::InvariantEndOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::DbgDeclareOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return true;
|
|
}
|
|
|
|
DeletionKind LLVM::DbgDeclareOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::DbgValueOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
// There is only one operand that we can remove the use of.
|
|
if (blockingUses.size() != 1)
|
|
return false;
|
|
|
|
return (*blockingUses.begin())->get() == getValue();
|
|
}
|
|
|
|
DeletionKind LLVM::DbgValueOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
// Rewriter by default is after '*this', but we need it before '*this'.
|
|
rewriter.setInsertionPoint(*this);
|
|
|
|
// Rather than dropping the debug value, replace it with undef to preserve the
|
|
// debug local variable info. This allows the debugger to inform the user that
|
|
// the variable has been optimized out.
|
|
auto undef =
|
|
rewriter.create<UndefOp>(getValue().getLoc(), getValue().getType());
|
|
rewriter.modifyOpInPlace(*this, [&] { getValueMutable().assign(undef); });
|
|
return DeletionKind::Keep;
|
|
}
|
|
|
|
bool LLVM::DbgDeclareOp::requiresReplacedValues() { return true; }
|
|
|
|
void LLVM::DbgDeclareOp::visitReplacedValues(
|
|
ArrayRef<std::pair<Operation *, Value>> definitions,
|
|
RewriterBase &rewriter) {
|
|
for (auto [op, value] : definitions) {
|
|
rewriter.setInsertionPointAfter(op);
|
|
rewriter.create<LLVM::DbgValueOp>(getLoc(), value, getVarInfo(),
|
|
getLocationExpr());
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interfaces for GEPOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool hasAllZeroIndices(LLVM::GEPOp gepOp) {
|
|
return llvm::all_of(gepOp.getIndices(), [](auto index) {
|
|
auto indexAttr = llvm::dyn_cast_if_present<IntegerAttr>(index);
|
|
return indexAttr && indexAttr.getValue() == 0;
|
|
});
|
|
}
|
|
|
|
bool LLVM::GEPOp::canUsesBeRemoved(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
// GEP can be removed as long as it is a no-op and its users can be removed.
|
|
if (!hasAllZeroIndices(*this))
|
|
return false;
|
|
return forwardToUsers(*this, newBlockingUses);
|
|
}
|
|
|
|
DeletionKind LLVM::GEPOp::removeBlockingUses(
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
/// Returns the amount of bytes the provided GEP elements will offset the
|
|
/// pointer by. Returns nullopt if no constant offset could be computed.
|
|
static std::optional<uint64_t> gepToByteOffset(const DataLayout &dataLayout,
|
|
LLVM::GEPOp gep) {
|
|
// Collects all indices.
|
|
SmallVector<uint64_t> indices;
|
|
for (auto index : gep.getIndices()) {
|
|
auto constIndex = dyn_cast<IntegerAttr>(index);
|
|
if (!constIndex)
|
|
return {};
|
|
int64_t gepIndex = constIndex.getInt();
|
|
// Negative indices are not supported.
|
|
if (gepIndex < 0)
|
|
return {};
|
|
indices.push_back(gepIndex);
|
|
}
|
|
|
|
Type currentType = gep.getElemType();
|
|
uint64_t offset = indices[0] * dataLayout.getTypeSize(currentType);
|
|
|
|
for (uint64_t index : llvm::drop_begin(indices)) {
|
|
bool shouldCancel =
|
|
TypeSwitch<Type, bool>(currentType)
|
|
.Case([&](LLVM::LLVMArrayType arrayType) {
|
|
offset +=
|
|
index * dataLayout.getTypeSize(arrayType.getElementType());
|
|
currentType = arrayType.getElementType();
|
|
return false;
|
|
})
|
|
.Case([&](LLVM::LLVMStructType structType) {
|
|
ArrayRef<Type> body = structType.getBody();
|
|
assert(index < body.size() && "expected valid struct indexing");
|
|
for (uint32_t i : llvm::seq(index)) {
|
|
if (!structType.isPacked())
|
|
offset = llvm::alignTo(
|
|
offset, dataLayout.getTypeABIAlignment(body[i]));
|
|
offset += dataLayout.getTypeSize(body[i]);
|
|
}
|
|
|
|
// Align for the current type as well.
|
|
if (!structType.isPacked())
|
|
offset = llvm::alignTo(
|
|
offset, dataLayout.getTypeABIAlignment(body[index]));
|
|
currentType = body[index];
|
|
return false;
|
|
})
|
|
.Default([&](Type type) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "[sroa] Unsupported type for offset computations"
|
|
<< type << "\n");
|
|
return true;
|
|
});
|
|
|
|
if (shouldCancel)
|
|
return std::nullopt;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
namespace {
|
|
/// A struct that stores both the index into the aggregate type of the slot as
|
|
/// well as the corresponding byte offset in memory.
|
|
struct SubslotAccessInfo {
|
|
/// The parent slot's index that the access falls into.
|
|
uint32_t index;
|
|
/// The offset into the subslot of the access.
|
|
uint64_t subslotOffset;
|
|
};
|
|
} // namespace
|
|
|
|
/// Computes subslot access information for an access into `slot` with the given
|
|
/// offset.
|
|
/// Returns nullopt when the offset is out-of-bounds or when the access is into
|
|
/// the padding of `slot`.
|
|
static std::optional<SubslotAccessInfo>
|
|
getSubslotAccessInfo(const DestructurableMemorySlot &slot,
|
|
const DataLayout &dataLayout, LLVM::GEPOp gep) {
|
|
std::optional<uint64_t> offset = gepToByteOffset(dataLayout, gep);
|
|
if (!offset)
|
|
return {};
|
|
|
|
// Helper to check that a constant index is in the bounds of the GEP index
|
|
// representation. LLVM dialects's GEP arguments have a limited bitwidth, thus
|
|
// this additional check is necessary.
|
|
auto isOutOfBoundsGEPIndex = [](uint64_t index) {
|
|
return index >= (1 << LLVM::kGEPConstantBitWidth);
|
|
};
|
|
|
|
Type type = slot.elemType;
|
|
if (*offset >= dataLayout.getTypeSize(type))
|
|
return {};
|
|
return TypeSwitch<Type, std::optional<SubslotAccessInfo>>(type)
|
|
.Case([&](LLVM::LLVMArrayType arrayType)
|
|
-> std::optional<SubslotAccessInfo> {
|
|
// Find which element of the array contains the offset.
|
|
uint64_t elemSize = dataLayout.getTypeSize(arrayType.getElementType());
|
|
uint64_t index = *offset / elemSize;
|
|
if (isOutOfBoundsGEPIndex(index))
|
|
return {};
|
|
return SubslotAccessInfo{static_cast<uint32_t>(index),
|
|
*offset - (index * elemSize)};
|
|
})
|
|
.Case([&](LLVM::LLVMStructType structType)
|
|
-> std::optional<SubslotAccessInfo> {
|
|
uint64_t distanceToStart = 0;
|
|
// Walk over the elements of the struct to find in which of
|
|
// them the offset is.
|
|
for (auto [index, elem] : llvm::enumerate(structType.getBody())) {
|
|
uint64_t elemSize = dataLayout.getTypeSize(elem);
|
|
if (!structType.isPacked()) {
|
|
distanceToStart = llvm::alignTo(
|
|
distanceToStart, dataLayout.getTypeABIAlignment(elem));
|
|
// If the offset is in padding, cancel the rewrite.
|
|
if (offset < distanceToStart)
|
|
return {};
|
|
}
|
|
|
|
if (offset < distanceToStart + elemSize) {
|
|
if (isOutOfBoundsGEPIndex(index))
|
|
return {};
|
|
// The offset is within this element, stop iterating the
|
|
// struct and return the index.
|
|
return SubslotAccessInfo{static_cast<uint32_t>(index),
|
|
*offset - distanceToStart};
|
|
}
|
|
|
|
// The offset is not within this element, continue walking
|
|
// over the struct.
|
|
distanceToStart += elemSize;
|
|
}
|
|
|
|
return {};
|
|
});
|
|
}
|
|
|
|
/// Constructs a byte array type of the given size.
|
|
static LLVM::LLVMArrayType getByteArrayType(MLIRContext *context,
|
|
unsigned size) {
|
|
auto byteType = IntegerType::get(context, 8);
|
|
return LLVM::LLVMArrayType::get(context, byteType, size);
|
|
}
|
|
|
|
LogicalResult LLVM::GEPOp::ensureOnlySafeAccesses(
|
|
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
if (getBase() != slot.ptr)
|
|
return success();
|
|
std::optional<uint64_t> gepOffset = gepToByteOffset(dataLayout, *this);
|
|
if (!gepOffset)
|
|
return failure();
|
|
uint64_t slotSize = dataLayout.getTypeSize(slot.elemType);
|
|
// Check that the access is strictly inside the slot.
|
|
if (*gepOffset >= slotSize)
|
|
return failure();
|
|
// Every access that remains in bounds of the remaining slot is considered
|
|
// legal.
|
|
mustBeSafelyUsed.emplace_back<MemorySlot>(
|
|
{getRes(), getByteArrayType(getContext(), slotSize - *gepOffset)});
|
|
return success();
|
|
}
|
|
|
|
bool LLVM::GEPOp::canRewire(const DestructurableMemorySlot &slot,
|
|
SmallPtrSetImpl<Attribute> &usedIndices,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
if (!isa<LLVM::LLVMPointerType>(getBase().getType()))
|
|
return false;
|
|
|
|
if (getBase() != slot.ptr)
|
|
return false;
|
|
std::optional<SubslotAccessInfo> accessInfo =
|
|
getSubslotAccessInfo(slot, dataLayout, *this);
|
|
if (!accessInfo)
|
|
return false;
|
|
auto indexAttr =
|
|
IntegerAttr::get(IntegerType::get(getContext(), 32), accessInfo->index);
|
|
assert(slot.elementPtrs.contains(indexAttr));
|
|
usedIndices.insert(indexAttr);
|
|
|
|
// The remainder of the subslot should be accesses in-bounds. Thus, we create
|
|
// a dummy slot with the size of the remainder.
|
|
Type subslotType = slot.elementPtrs.lookup(indexAttr);
|
|
uint64_t slotSize = dataLayout.getTypeSize(subslotType);
|
|
LLVM::LLVMArrayType remainingSlotType =
|
|
getByteArrayType(getContext(), slotSize - accessInfo->subslotOffset);
|
|
mustBeSafelyUsed.emplace_back<MemorySlot>({getRes(), remainingSlotType});
|
|
|
|
return true;
|
|
}
|
|
|
|
DeletionKind LLVM::GEPOp::rewire(const DestructurableMemorySlot &slot,
|
|
DenseMap<Attribute, MemorySlot> &subslots,
|
|
RewriterBase &rewriter,
|
|
const DataLayout &dataLayout) {
|
|
std::optional<SubslotAccessInfo> accessInfo =
|
|
getSubslotAccessInfo(slot, dataLayout, *this);
|
|
assert(accessInfo && "expected access info to be checked before");
|
|
auto indexAttr =
|
|
IntegerAttr::get(IntegerType::get(getContext(), 32), accessInfo->index);
|
|
const MemorySlot &newSlot = subslots.at(indexAttr);
|
|
|
|
auto byteType = IntegerType::get(rewriter.getContext(), 8);
|
|
auto newPtr = rewriter.createOrFold<LLVM::GEPOp>(
|
|
getLoc(), getResult().getType(), byteType, newSlot.ptr,
|
|
ArrayRef<GEPArg>(accessInfo->subslotOffset), getInbounds());
|
|
rewriter.replaceAllUsesWith(getResult(), newPtr);
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities for memory intrinsics
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Returns the length of the given memory intrinsic in bytes if it can be known
|
|
/// at compile-time on a best-effort basis, nothing otherwise.
|
|
template <class MemIntr>
|
|
std::optional<uint64_t> getStaticMemIntrLen(MemIntr op) {
|
|
APInt memIntrLen;
|
|
if (!matchPattern(op.getLen(), m_ConstantInt(&memIntrLen)))
|
|
return {};
|
|
if (memIntrLen.getBitWidth() > 64)
|
|
return {};
|
|
return memIntrLen.getZExtValue();
|
|
}
|
|
|
|
/// Returns the length of the given memory intrinsic in bytes if it can be known
|
|
/// at compile-time on a best-effort basis, nothing otherwise.
|
|
/// Because MemcpyInlineOp has its length encoded as an attribute, this requires
|
|
/// specialized handling.
|
|
template <>
|
|
std::optional<uint64_t> getStaticMemIntrLen(LLVM::MemcpyInlineOp op) {
|
|
APInt memIntrLen = op.getLen();
|
|
if (memIntrLen.getBitWidth() > 64)
|
|
return {};
|
|
return memIntrLen.getZExtValue();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/// Returns whether one can be sure the memory intrinsic does not write outside
|
|
/// of the bounds of the given slot, on a best-effort basis.
|
|
template <class MemIntr>
|
|
static bool definitelyWritesOnlyWithinSlot(MemIntr op, const MemorySlot &slot,
|
|
const DataLayout &dataLayout) {
|
|
if (!isa<LLVM::LLVMPointerType>(slot.ptr.getType()) ||
|
|
op.getDst() != slot.ptr)
|
|
return false;
|
|
|
|
std::optional<uint64_t> memIntrLen = getStaticMemIntrLen(op);
|
|
return memIntrLen && *memIntrLen <= dataLayout.getTypeSize(slot.elemType);
|
|
}
|
|
|
|
/// Checks whether all indices are i32. This is used to check GEPs can index
|
|
/// into them.
|
|
static bool areAllIndicesI32(const DestructurableMemorySlot &slot) {
|
|
Type i32 = IntegerType::get(slot.ptr.getContext(), 32);
|
|
return llvm::all_of(llvm::make_first_range(slot.elementPtrs),
|
|
[&](Attribute index) {
|
|
auto intIndex = dyn_cast<IntegerAttr>(index);
|
|
return intIndex && intIndex.getType() == i32;
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interfaces for memset
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool LLVM::MemsetOp::loadsFrom(const MemorySlot &slot) { return false; }
|
|
|
|
bool LLVM::MemsetOp::storesTo(const MemorySlot &slot) {
|
|
return getDst() == slot.ptr;
|
|
}
|
|
|
|
Value LLVM::MemsetOp::getStored(const MemorySlot &slot,
|
|
RewriterBase &rewriter) {
|
|
// TODO: Support non-integer types.
|
|
return TypeSwitch<Type, Value>(slot.elemType)
|
|
.Case([&](IntegerType intType) -> Value {
|
|
if (intType.getWidth() == 8)
|
|
return getVal();
|
|
|
|
assert(intType.getWidth() % 8 == 0);
|
|
|
|
// Build the memset integer by repeatedly shifting the value and
|
|
// or-ing it with the previous value.
|
|
uint64_t coveredBits = 8;
|
|
Value currentValue =
|
|
rewriter.create<LLVM::ZExtOp>(getLoc(), intType, getVal());
|
|
while (coveredBits < intType.getWidth()) {
|
|
Value shiftBy =
|
|
rewriter.create<LLVM::ConstantOp>(getLoc(), intType, coveredBits);
|
|
Value shifted =
|
|
rewriter.create<LLVM::ShlOp>(getLoc(), currentValue, shiftBy);
|
|
currentValue =
|
|
rewriter.create<LLVM::OrOp>(getLoc(), currentValue, shifted);
|
|
coveredBits *= 2;
|
|
}
|
|
|
|
return currentValue;
|
|
})
|
|
.Default([](Type) -> Value {
|
|
llvm_unreachable(
|
|
"getStored should not be called on memset to unsupported type");
|
|
});
|
|
}
|
|
|
|
bool LLVM::MemsetOp::canUsesBeRemoved(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
// TODO: Support non-integer types.
|
|
bool canConvertType =
|
|
TypeSwitch<Type, bool>(slot.elemType)
|
|
.Case([](IntegerType intType) {
|
|
return intType.getWidth() % 8 == 0 && intType.getWidth() > 0;
|
|
})
|
|
.Default([](Type) { return false; });
|
|
if (!canConvertType)
|
|
return false;
|
|
|
|
if (getIsVolatile())
|
|
return false;
|
|
|
|
return getStaticMemIntrLen(*this) == dataLayout.getTypeSize(slot.elemType);
|
|
}
|
|
|
|
DeletionKind LLVM::MemsetOp::removeBlockingUses(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
RewriterBase &rewriter, Value reachingDefinition) {
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
LogicalResult LLVM::MemsetOp::ensureOnlySafeAccesses(
|
|
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return success(definitelyWritesOnlyWithinSlot(*this, slot, dataLayout));
|
|
}
|
|
|
|
bool LLVM::MemsetOp::canRewire(const DestructurableMemorySlot &slot,
|
|
SmallPtrSetImpl<Attribute> &usedIndices,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
if (&slot.elemType.getDialect() != getOperation()->getDialect())
|
|
return false;
|
|
|
|
if (getIsVolatile())
|
|
return false;
|
|
|
|
if (!slot.elemType.cast<DestructurableTypeInterface>()
|
|
.getSubelementIndexMap())
|
|
return false;
|
|
|
|
if (!areAllIndicesI32(slot))
|
|
return false;
|
|
|
|
return definitelyWritesOnlyWithinSlot(*this, slot, dataLayout);
|
|
}
|
|
|
|
DeletionKind LLVM::MemsetOp::rewire(const DestructurableMemorySlot &slot,
|
|
DenseMap<Attribute, MemorySlot> &subslots,
|
|
RewriterBase &rewriter,
|
|
const DataLayout &dataLayout) {
|
|
std::optional<DenseMap<Attribute, Type>> types =
|
|
slot.elemType.cast<DestructurableTypeInterface>().getSubelementIndexMap();
|
|
|
|
IntegerAttr memsetLenAttr;
|
|
bool successfulMatch =
|
|
matchPattern(getLen(), m_Constant<IntegerAttr>(&memsetLenAttr));
|
|
(void)successfulMatch;
|
|
assert(successfulMatch);
|
|
|
|
bool packed = false;
|
|
if (auto structType = dyn_cast<LLVM::LLVMStructType>(slot.elemType))
|
|
packed = structType.isPacked();
|
|
|
|
Type i32 = IntegerType::get(getContext(), 32);
|
|
uint64_t memsetLen = memsetLenAttr.getValue().getZExtValue();
|
|
uint64_t covered = 0;
|
|
for (size_t i = 0; i < types->size(); i++) {
|
|
// Create indices on the fly to get elements in the right order.
|
|
Attribute index = IntegerAttr::get(i32, i);
|
|
Type elemType = types->at(index);
|
|
uint64_t typeSize = dataLayout.getTypeSize(elemType);
|
|
|
|
if (!packed)
|
|
covered =
|
|
llvm::alignTo(covered, dataLayout.getTypeABIAlignment(elemType));
|
|
|
|
if (covered >= memsetLen)
|
|
break;
|
|
|
|
// If this subslot is used, apply a new memset to it.
|
|
// Otherwise, only compute its offset within the original memset.
|
|
if (subslots.contains(index)) {
|
|
uint64_t newMemsetSize = std::min(memsetLen - covered, typeSize);
|
|
|
|
Value newMemsetSizeValue =
|
|
rewriter
|
|
.create<LLVM::ConstantOp>(
|
|
getLen().getLoc(),
|
|
IntegerAttr::get(memsetLenAttr.getType(), newMemsetSize))
|
|
.getResult();
|
|
|
|
rewriter.create<LLVM::MemsetOp>(getLoc(), subslots.at(index).ptr,
|
|
getVal(), newMemsetSizeValue,
|
|
getIsVolatile());
|
|
}
|
|
|
|
covered += typeSize;
|
|
}
|
|
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interfaces for memcpy/memmove
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class MemcpyLike>
|
|
static bool memcpyLoadsFrom(MemcpyLike op, const MemorySlot &slot) {
|
|
return op.getSrc() == slot.ptr;
|
|
}
|
|
|
|
template <class MemcpyLike>
|
|
static bool memcpyStoresTo(MemcpyLike op, const MemorySlot &slot) {
|
|
return op.getDst() == slot.ptr;
|
|
}
|
|
|
|
template <class MemcpyLike>
|
|
static Value memcpyGetStored(MemcpyLike op, const MemorySlot &slot,
|
|
RewriterBase &rewriter) {
|
|
return rewriter.create<LLVM::LoadOp>(op.getLoc(), slot.elemType, op.getSrc());
|
|
}
|
|
|
|
template <class MemcpyLike>
|
|
static bool
|
|
memcpyCanUsesBeRemoved(MemcpyLike op, const MemorySlot &slot,
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
// If source and destination are the same, memcpy behavior is undefined and
|
|
// memmove is a no-op. Because there is no memory change happening here,
|
|
// simplifying such operations is left to canonicalization.
|
|
if (op.getDst() == op.getSrc())
|
|
return false;
|
|
|
|
if (op.getIsVolatile())
|
|
return false;
|
|
|
|
return getStaticMemIntrLen(op) == dataLayout.getTypeSize(slot.elemType);
|
|
}
|
|
|
|
template <class MemcpyLike>
|
|
static DeletionKind
|
|
memcpyRemoveBlockingUses(MemcpyLike op, const MemorySlot &slot,
|
|
const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
RewriterBase &rewriter, Value reachingDefinition) {
|
|
if (op.loadsFrom(slot))
|
|
rewriter.create<LLVM::StoreOp>(op.getLoc(), reachingDefinition,
|
|
op.getDst());
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
template <class MemcpyLike>
|
|
static LogicalResult
|
|
memcpyEnsureOnlySafeAccesses(MemcpyLike op, const MemorySlot &slot,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
|
|
DataLayout dataLayout = DataLayout::closest(op);
|
|
// While rewiring memcpy-like intrinsics only supports full copies, partial
|
|
// copies are still safe accesses so it is enough to only check for writes
|
|
// within bounds.
|
|
return success(definitelyWritesOnlyWithinSlot(op, slot, dataLayout));
|
|
}
|
|
|
|
template <class MemcpyLike>
|
|
static bool memcpyCanRewire(MemcpyLike op, const DestructurableMemorySlot &slot,
|
|
SmallPtrSetImpl<Attribute> &usedIndices,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
if (op.getIsVolatile())
|
|
return false;
|
|
|
|
if (!slot.elemType.cast<DestructurableTypeInterface>()
|
|
.getSubelementIndexMap())
|
|
return false;
|
|
|
|
if (!areAllIndicesI32(slot))
|
|
return false;
|
|
|
|
// Only full copies are supported.
|
|
if (getStaticMemIntrLen(op) != dataLayout.getTypeSize(slot.elemType))
|
|
return false;
|
|
|
|
if (op.getSrc() == slot.ptr)
|
|
for (Attribute index : llvm::make_first_range(slot.elementPtrs))
|
|
usedIndices.insert(index);
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <class MemcpyLike>
|
|
void createMemcpyLikeToReplace(RewriterBase &rewriter, const DataLayout &layout,
|
|
MemcpyLike toReplace, Value dst, Value src,
|
|
Type toCpy, bool isVolatile) {
|
|
Value memcpySize = rewriter.create<LLVM::ConstantOp>(
|
|
toReplace.getLoc(), IntegerAttr::get(toReplace.getLen().getType(),
|
|
layout.getTypeSize(toCpy)));
|
|
rewriter.create<MemcpyLike>(toReplace.getLoc(), dst, src, memcpySize,
|
|
isVolatile);
|
|
}
|
|
|
|
template <>
|
|
void createMemcpyLikeToReplace(RewriterBase &rewriter, const DataLayout &layout,
|
|
LLVM::MemcpyInlineOp toReplace, Value dst,
|
|
Value src, Type toCpy, bool isVolatile) {
|
|
Type lenType = IntegerType::get(toReplace->getContext(),
|
|
toReplace.getLen().getBitWidth());
|
|
rewriter.create<LLVM::MemcpyInlineOp>(
|
|
toReplace.getLoc(), dst, src,
|
|
IntegerAttr::get(lenType, layout.getTypeSize(toCpy)), isVolatile);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/// Rewires a memcpy-like operation. Only copies to or from the full slot are
|
|
/// supported.
|
|
template <class MemcpyLike>
|
|
static DeletionKind
|
|
memcpyRewire(MemcpyLike op, const DestructurableMemorySlot &slot,
|
|
DenseMap<Attribute, MemorySlot> &subslots, RewriterBase &rewriter,
|
|
const DataLayout &dataLayout) {
|
|
if (subslots.empty())
|
|
return DeletionKind::Delete;
|
|
|
|
assert((slot.ptr == op.getDst()) != (slot.ptr == op.getSrc()));
|
|
bool isDst = slot.ptr == op.getDst();
|
|
|
|
#ifndef NDEBUG
|
|
size_t slotsTreated = 0;
|
|
#endif
|
|
|
|
// It was previously checked that index types are consistent, so this type can
|
|
// be fetched now.
|
|
Type indexType = cast<IntegerAttr>(subslots.begin()->first).getType();
|
|
for (size_t i = 0, e = slot.elementPtrs.size(); i != e; i++) {
|
|
Attribute index = IntegerAttr::get(indexType, i);
|
|
if (!subslots.contains(index))
|
|
continue;
|
|
const MemorySlot &subslot = subslots.at(index);
|
|
|
|
#ifndef NDEBUG
|
|
slotsTreated++;
|
|
#endif
|
|
|
|
// First get a pointer to the equivalent of this subslot from the source
|
|
// pointer.
|
|
SmallVector<LLVM::GEPArg> gepIndices{
|
|
0, static_cast<int32_t>(
|
|
cast<IntegerAttr>(index).getValue().getZExtValue())};
|
|
Value subslotPtrInOther = rewriter.create<LLVM::GEPOp>(
|
|
op.getLoc(), LLVM::LLVMPointerType::get(op.getContext()), slot.elemType,
|
|
isDst ? op.getSrc() : op.getDst(), gepIndices);
|
|
|
|
// Then create a new memcpy out of this source pointer.
|
|
createMemcpyLikeToReplace(rewriter, dataLayout, op,
|
|
isDst ? subslot.ptr : subslotPtrInOther,
|
|
isDst ? subslotPtrInOther : subslot.ptr,
|
|
subslot.elemType, op.getIsVolatile());
|
|
}
|
|
|
|
assert(subslots.size() == slotsTreated);
|
|
|
|
return DeletionKind::Delete;
|
|
}
|
|
|
|
bool LLVM::MemcpyOp::loadsFrom(const MemorySlot &slot) {
|
|
return memcpyLoadsFrom(*this, slot);
|
|
}
|
|
|
|
bool LLVM::MemcpyOp::storesTo(const MemorySlot &slot) {
|
|
return memcpyStoresTo(*this, slot);
|
|
}
|
|
|
|
Value LLVM::MemcpyOp::getStored(const MemorySlot &slot,
|
|
RewriterBase &rewriter) {
|
|
return memcpyGetStored(*this, slot, rewriter);
|
|
}
|
|
|
|
bool LLVM::MemcpyOp::canUsesBeRemoved(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses,
|
|
dataLayout);
|
|
}
|
|
|
|
DeletionKind LLVM::MemcpyOp::removeBlockingUses(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
RewriterBase &rewriter, Value reachingDefinition) {
|
|
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
|
|
reachingDefinition);
|
|
}
|
|
|
|
LogicalResult LLVM::MemcpyOp::ensureOnlySafeAccesses(
|
|
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
|
|
}
|
|
|
|
bool LLVM::MemcpyOp::canRewire(const DestructurableMemorySlot &slot,
|
|
SmallPtrSetImpl<Attribute> &usedIndices,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed,
|
|
dataLayout);
|
|
}
|
|
|
|
DeletionKind LLVM::MemcpyOp::rewire(const DestructurableMemorySlot &slot,
|
|
DenseMap<Attribute, MemorySlot> &subslots,
|
|
RewriterBase &rewriter,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyRewire(*this, slot, subslots, rewriter, dataLayout);
|
|
}
|
|
|
|
bool LLVM::MemcpyInlineOp::loadsFrom(const MemorySlot &slot) {
|
|
return memcpyLoadsFrom(*this, slot);
|
|
}
|
|
|
|
bool LLVM::MemcpyInlineOp::storesTo(const MemorySlot &slot) {
|
|
return memcpyStoresTo(*this, slot);
|
|
}
|
|
|
|
Value LLVM::MemcpyInlineOp::getStored(const MemorySlot &slot,
|
|
RewriterBase &rewriter) {
|
|
return memcpyGetStored(*this, slot, rewriter);
|
|
}
|
|
|
|
bool LLVM::MemcpyInlineOp::canUsesBeRemoved(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses,
|
|
dataLayout);
|
|
}
|
|
|
|
DeletionKind LLVM::MemcpyInlineOp::removeBlockingUses(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
RewriterBase &rewriter, Value reachingDefinition) {
|
|
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
|
|
reachingDefinition);
|
|
}
|
|
|
|
LogicalResult LLVM::MemcpyInlineOp::ensureOnlySafeAccesses(
|
|
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
|
|
}
|
|
|
|
bool LLVM::MemcpyInlineOp::canRewire(
|
|
const DestructurableMemorySlot &slot,
|
|
SmallPtrSetImpl<Attribute> &usedIndices,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed,
|
|
dataLayout);
|
|
}
|
|
|
|
DeletionKind
|
|
LLVM::MemcpyInlineOp::rewire(const DestructurableMemorySlot &slot,
|
|
DenseMap<Attribute, MemorySlot> &subslots,
|
|
RewriterBase &rewriter,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyRewire(*this, slot, subslots, rewriter, dataLayout);
|
|
}
|
|
|
|
bool LLVM::MemmoveOp::loadsFrom(const MemorySlot &slot) {
|
|
return memcpyLoadsFrom(*this, slot);
|
|
}
|
|
|
|
bool LLVM::MemmoveOp::storesTo(const MemorySlot &slot) {
|
|
return memcpyStoresTo(*this, slot);
|
|
}
|
|
|
|
Value LLVM::MemmoveOp::getStored(const MemorySlot &slot,
|
|
RewriterBase &rewriter) {
|
|
return memcpyGetStored(*this, slot, rewriter);
|
|
}
|
|
|
|
bool LLVM::MemmoveOp::canUsesBeRemoved(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
SmallVectorImpl<OpOperand *> &newBlockingUses,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses,
|
|
dataLayout);
|
|
}
|
|
|
|
DeletionKind LLVM::MemmoveOp::removeBlockingUses(
|
|
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
|
|
RewriterBase &rewriter, Value reachingDefinition) {
|
|
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
|
|
reachingDefinition);
|
|
}
|
|
|
|
LogicalResult LLVM::MemmoveOp::ensureOnlySafeAccesses(
|
|
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
|
|
}
|
|
|
|
bool LLVM::MemmoveOp::canRewire(const DestructurableMemorySlot &slot,
|
|
SmallPtrSetImpl<Attribute> &usedIndices,
|
|
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed,
|
|
dataLayout);
|
|
}
|
|
|
|
DeletionKind LLVM::MemmoveOp::rewire(const DestructurableMemorySlot &slot,
|
|
DenseMap<Attribute, MemorySlot> &subslots,
|
|
RewriterBase &rewriter,
|
|
const DataLayout &dataLayout) {
|
|
return memcpyRewire(*this, slot, subslots, rewriter, dataLayout);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interfaces for destructurable types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::optional<DenseMap<Attribute, Type>>
|
|
LLVM::LLVMStructType::getSubelementIndexMap() {
|
|
Type i32 = IntegerType::get(getContext(), 32);
|
|
DenseMap<Attribute, Type> destructured;
|
|
for (const auto &[index, elemType] : llvm::enumerate(getBody()))
|
|
destructured.insert({IntegerAttr::get(i32, index), elemType});
|
|
return destructured;
|
|
}
|
|
|
|
Type LLVM::LLVMStructType::getTypeAtIndex(Attribute index) {
|
|
auto indexAttr = llvm::dyn_cast<IntegerAttr>(index);
|
|
if (!indexAttr || !indexAttr.getType().isInteger(32))
|
|
return {};
|
|
int32_t indexInt = indexAttr.getInt();
|
|
ArrayRef<Type> body = getBody();
|
|
if (indexInt < 0 || body.size() <= static_cast<uint32_t>(indexInt))
|
|
return {};
|
|
return body[indexInt];
|
|
}
|
|
|
|
std::optional<DenseMap<Attribute, Type>>
|
|
LLVM::LLVMArrayType::getSubelementIndexMap() const {
|
|
constexpr size_t maxArraySizeForDestructuring = 16;
|
|
if (getNumElements() > maxArraySizeForDestructuring)
|
|
return {};
|
|
int32_t numElements = getNumElements();
|
|
|
|
Type i32 = IntegerType::get(getContext(), 32);
|
|
DenseMap<Attribute, Type> destructured;
|
|
for (int32_t index = 0; index < numElements; ++index)
|
|
destructured.insert({IntegerAttr::get(i32, index), getElementType()});
|
|
return destructured;
|
|
}
|
|
|
|
Type LLVM::LLVMArrayType::getTypeAtIndex(Attribute index) const {
|
|
auto indexAttr = llvm::dyn_cast<IntegerAttr>(index);
|
|
if (!indexAttr || !indexAttr.getType().isInteger(32))
|
|
return {};
|
|
int32_t indexInt = indexAttr.getInt();
|
|
if (indexInt < 0 || getNumElements() <= static_cast<uint32_t>(indexInt))
|
|
return {};
|
|
return getElementType();
|
|
}
|