**Description**
The documentation of `transform.structured.tile_using_forall` says:
_"It is the user’s responsibility to ensure that num_threads/tile_sizes
is a valid tiling specification (i.e. that only tiles parallel
dimensions, e.g. in the Linalg case)."_
In other words, tiling a non-parallel dimension would generate code with
data races which is not safe to parallelize. For example, consider this
example (included in the tests in this PR):
```
func.func @tile_thread_safety2(%arg0: tensor<100x300x8xf32>, %arg1: tensor<300x8xf32>) -> tensor<300x8xf32> {
%0 = scf.forall (%arg2) in (8) shared_outs(%arg3 = %arg1) -> (tensor<300x8xf32>) {
%1 = affine.min #map(%arg2)
%2 = affine.max #map1(%1)
%3 = affine.apply #map2(%arg2)
%extracted_slice = tensor.extract_slice %arg0[%3, 0, 0] [%2, 300, 8] [1, 1, 1] : tensor<100x300x8xf32> to tensor<?x300x8xf32>
%4 = linalg.generic {indexing_maps = [#map3, #map4], iterator_types = ["reduction", "parallel", "parallel"]} ins(%extracted_slice : tensor<?x300x8xf32>) outs(%arg3 : tensor<300x8xf32>) {
^bb0(%in: f32, %out: f32):
%5 = arith.addf %in, %out : f32
linalg.yield %5 : f32
} -> tensor<300x8xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %4 into %arg3[0, 0] [300, 8] [1, 1] : tensor<300x8xf32> into tensor<300x8xf32>
}
}
return %0 : tensor<300x8xf32>
}
```
We can easily see that this is not safe to parallelize because all
threads would be writing to the same position in `%arg3` (in the
`scf.forall.in_parallel`.
This PR detects wether it's safe to `tile_using_forall` and emits a
warning in the case it is not.
**Brief explanation**
It first generates a vector of affine expressions representing the tile
values and stores it in `dimExprs`. These affine expressions are
compared with the affine expressions coming from the results of the
affine map of each output in the linalg op. So going back to the
previous example, the original transform is:
```
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d1, d2)>
func.func @tile_thread_safety2(%arg0: tensor<100x300x8xf32>, %arg1: tensor<300x8xf32>) -> tensor<300x8xf32> {
// expected-warning@+1 {{tiling is not thread safe at axis #0}}
%0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["reduction", "parallel", "parallel"]} ins(%arg0 : tensor<100x300x8xf32>) outs(%arg1 : tensor<300x8xf32>) {
^bb0(%in: f32, %out: f32):
%1 = arith.addf %in, %out : f32
linalg.yield %1 : f32
} -> tensor<300x8xf32>
return %0 : tensor<300x8xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg0 : (!transform.any_op) -> !transform.any_op
%forall, %tiled_generic = transform.structured.tile_using_forall %0 num_threads [8]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
```
The `num_threads` attribute would be represented as `(d0)`. Because the
linalg op has only one output (`arg1`) it would only check against the
results of `#map1`, which are `(d1, d2)`. The idea is to check that all
affine expressions in `dimExprs` are present in the output affine map.
In this example, `d0` is not in `(d1, d2)`, so tiling that axis is
considered not thread safe.
938 lines
39 KiB
C++
938 lines
39 KiB
C++
//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the linalg dialect Tiling pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/LoopUtils.h"
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/ValueRange.h"
|
|
#include "mlir/Transforms/FoldUtils.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <utility>
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_LINALGTILINGPASS
|
|
#include "mlir/Dialect/Linalg/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::affine;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::scf;
|
|
|
|
#define DEBUG_TYPE "linalg-tiling"
|
|
|
|
std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
|
|
mlir::linalg::makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map,
|
|
ArrayRef<OpFoldResult> allShapeSizes,
|
|
ArrayRef<OpFoldResult> allTileSizes) {
|
|
assert(allTileSizes.size() == map.getNumResults());
|
|
// Apply `map` to get shape sizes in loop order.
|
|
SmallVector<OpFoldResult> shapeSizes =
|
|
makeComposedFoldedMultiResultAffineApply(b, loc, map, allShapeSizes);
|
|
SmallVector<OpFoldResult> tileSizes(allTileSizes.begin(), allTileSizes.end());
|
|
|
|
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
|
|
if (getConstantIntValue(tileSizes[idx - zerosCount]) ==
|
|
static_cast<int64_t>(0)) {
|
|
shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
|
|
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
|
|
++zerosCount;
|
|
continue;
|
|
}
|
|
loopIndexToRangeIndex[idx] = idx - zerosCount;
|
|
}
|
|
|
|
// Create a new range with the applied tile sizes.
|
|
SmallVector<Range, 4> res;
|
|
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
|
|
res.push_back(Range{b.getIndexAttr(0), shapeSizes[idx], tileSizes[idx]});
|
|
return std::make_tuple(res, loopIndexToRangeIndex);
|
|
}
|
|
|
|
void mlir::linalg::transformIndexOps(
|
|
RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
|
|
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
|
|
SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
|
|
for (auto en : enumerate(allIvs)) {
|
|
auto rangeIndex = loopIndexToRangeIndex.find(en.index());
|
|
if (rangeIndex == loopIndexToRangeIndex.end())
|
|
continue;
|
|
en.value() = ivs[rangeIndex->second];
|
|
}
|
|
offsetIndices(b, op, getAsOpFoldResult(allIvs));
|
|
}
|
|
|
|
/// Asserts that the given index-typed value is strictly positive. If the value
|
|
/// is an attribute, asserts at compile time, otherwise emits an assertion
|
|
/// checked at runtime.
|
|
static void emitIsPositiveIndexAssertion(ImplicitLocOpBuilder &b,
|
|
OpFoldResult value) {
|
|
if (auto attr = llvm::dyn_cast_if_present<Attribute>(value)) {
|
|
assert(cast<IntegerAttr>(attr).getValue().isStrictlyPositive() &&
|
|
"expected strictly positive tile size and divisor");
|
|
return;
|
|
}
|
|
|
|
Value zero = b.create<arith::ConstantIndexOp>(0);
|
|
Value condition = b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt,
|
|
value.get<Value>(), zero);
|
|
b.create<cf::AssertOp>(
|
|
condition,
|
|
b.getStringAttr("expected strictly positive tile size and divisor"));
|
|
}
|
|
|
|
FailureOr<StaticMultiSizeSpecification>
|
|
mlir::linalg::computeStaticMultiTileSizes(LinalgOp op, unsigned dimension,
|
|
int64_t targetSize, int64_t divisor) {
|
|
assert(!op.hasDynamicShape() &&
|
|
"cannot compute static multi-tile sizes for an op with dynamic shape");
|
|
assert(targetSize > 0 && "target size must be non-negative");
|
|
assert(divisor > 0 && "divisor must be non-negative");
|
|
assert(dimension < op.getNumLoops() && "dimension overflow");
|
|
|
|
StaticMultiSizeSpecification spec;
|
|
int64_t tripCount = op.getStaticLoopRanges()[dimension];
|
|
int64_t a = tripCount / divisor;
|
|
int64_t t = (targetSize + divisor - 1) / divisor;
|
|
int64_t totalTripCount = (a + t - 1) / t;
|
|
spec.lowTileSize = (a / totalTripCount) * divisor;
|
|
spec.highTileSize = spec.lowTileSize + divisor;
|
|
spec.highTripCount = a % totalTripCount;
|
|
spec.lowTripCount = totalTripCount - spec.highTripCount;
|
|
if (spec.lowTileSize * spec.lowTripCount +
|
|
spec.highTileSize * spec.highTripCount !=
|
|
tripCount) {
|
|
return failure();
|
|
}
|
|
return spec;
|
|
}
|
|
|
|
FailureOr<MultiSizeSpecification>
|
|
mlir::linalg::computeMultiTileSizes(OpBuilder &builder, LinalgOp op,
|
|
unsigned dimension, OpFoldResult targetSize,
|
|
OpFoldResult divisor, bool emitAssertions) {
|
|
// Bail out on dimension overflow.
|
|
if (dimension >= op.getNumLoops())
|
|
return failure();
|
|
|
|
// The code below works only on values.
|
|
Location loc = op.getLoc();
|
|
ImplicitLocOpBuilder b(loc, builder);
|
|
if (emitAssertions) {
|
|
emitIsPositiveIndexAssertion(b, targetSize);
|
|
emitIsPositiveIndexAssertion(b, divisor);
|
|
}
|
|
Value targetSizeValue =
|
|
getValueOrCreateConstantIndexOp(builder, loc, targetSize);
|
|
Value divisorValue = getValueOrCreateConstantIndexOp(builder, loc, divisor);
|
|
|
|
// Find the trip count of the iteration space dimension for which the tile
|
|
// sizes are computed.
|
|
SmallVector<OpFoldResult> allShapes =
|
|
op.createFlatListOfOperandDims(b, b.getLoc());
|
|
AffineMap shapesToLoops = op.getShapesToLoopsMap();
|
|
SmallVector<OpFoldResult> loopRanges =
|
|
makeComposedFoldedMultiResultAffineApply(b, op.getLoc(), shapesToLoops,
|
|
allShapes);
|
|
Value tripCount =
|
|
getValueOrCreateConstantIndexOp(b, op.getLoc(), loopRanges[dimension]);
|
|
|
|
// Compute the tile sizes and the respective numbers of tiles.
|
|
AffineExpr s0 = b.getAffineSymbolExpr(0);
|
|
AffineExpr s1 = b.getAffineSymbolExpr(1);
|
|
AffineExpr s2 = b.getAffineSymbolExpr(2);
|
|
auto apply = [&](AffineExpr expr, ArrayRef<OpFoldResult> ofrs) -> Value {
|
|
return affine::makeComposedAffineApply(b, b.getLoc(), expr, ofrs);
|
|
};
|
|
Value a = apply(s0.floorDiv(s1), {tripCount, divisorValue});
|
|
Value t = apply((s0 + s1 - 1).floorDiv(s1), {targetSizeValue, divisorValue});
|
|
Value d = apply((s0 + s1 - 1).floorDiv(s1), {a, t});
|
|
Value s = apply(s0.floorDiv(s1) * s2, {a, d, divisorValue});
|
|
Value v = apply(s0 % s1, {a, d});
|
|
Value u = apply(s0 - s1, {d, v});
|
|
|
|
MultiSizeSpecification spec;
|
|
spec.lowTileSize = s;
|
|
spec.highTileSize = apply(s0 + s1, {s, divisorValue});
|
|
spec.lowTripCount = u;
|
|
spec.highTripCount = v;
|
|
|
|
// If requested, emit the check that the tile sizes are computed correctly.
|
|
// For example, for iteration dimension size of 15 and the target size 8 it is
|
|
// impossible to find two tile sizes both divisible by 8 that fully cover the
|
|
// original space dimension.
|
|
if (emitAssertions) {
|
|
AffineExpr s3 = builder.getAffineSymbolExpr(3);
|
|
Value coveredSize =
|
|
apply(s0 * s1 + s2 * s3, {spec.lowTileSize, spec.lowTripCount,
|
|
spec.highTileSize, spec.highTripCount});
|
|
Value equals = b.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
|
|
coveredSize, tripCount);
|
|
b.create<cf::AssertOp>(
|
|
equals, builder.getStringAttr(
|
|
"could not compute dynamic multi-size tile shapes"));
|
|
}
|
|
|
|
return spec;
|
|
}
|
|
|
|
/// Returns true if the maximum tile offset `tileSize * numThreads-1` is less
|
|
/// than `iterationSize`.
|
|
static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize,
|
|
OpFoldResult numThreads,
|
|
OpFoldResult iterationSize) {
|
|
std::optional<int64_t> tileSizeConst = getConstantIntValue(tileSize);
|
|
std::optional<int64_t> numThreadsConst = getConstantIntValue(numThreads);
|
|
std::optional<int64_t> iterSizeConst = getConstantIntValue(iterationSize);
|
|
if (!tileSizeConst || !numThreadsConst || !iterSizeConst)
|
|
return false;
|
|
return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst;
|
|
}
|
|
|
|
/// Build an `affine_max` of all the `vals`.
|
|
static OpFoldResult buildMax(OpBuilder &b, Location loc,
|
|
ArrayRef<OpFoldResult> vals) {
|
|
return affine::makeComposedFoldedAffineMax(
|
|
b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
|
|
vals);
|
|
}
|
|
|
|
/// Build an `affine_min` of all the `vals`.
|
|
static OpFoldResult buildMin(OpBuilder &b, Location loc,
|
|
ArrayRef<OpFoldResult> vals) {
|
|
return affine::makeComposedFoldedAffineMin(
|
|
b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
|
|
vals);
|
|
}
|
|
|
|
/// Fill out the `tiledOffsets` and `tiledSizes` to be used to tile to a given
|
|
/// number of threads.
|
|
static void calculateTileOffsetsAndSizes(
|
|
RewriterBase &b, Location loc, scf::ForallOp forallOp,
|
|
ArrayRef<OpFoldResult> numThreads, SmallVector<Range> loopRanges,
|
|
bool omitTileOffsetBoundsCheck,
|
|
std::optional<ArrayRef<OpFoldResult>> nominalTileSizes,
|
|
SmallVector<OpFoldResult> &tiledOffsets,
|
|
SmallVector<OpFoldResult> &tiledSizes) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPointToStart(forallOp.getBody(0));
|
|
|
|
ValueRange threadIds = forallOp.getInductionVars();
|
|
SmallVector<OpFoldResult> nonZeroNumThreads =
|
|
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
|
|
return !isConstantIntValue(ofr, 0);
|
|
}));
|
|
int64_t nLoops = loopRanges.size();
|
|
tiledOffsets.reserve(nLoops);
|
|
tiledSizes.reserve(nLoops);
|
|
for (unsigned loopIdx = 0, threadIdIdx = 0; loopIdx < nLoops; ++loopIdx) {
|
|
bool overflow = loopIdx >= numThreads.size();
|
|
bool isZero = !overflow && isConstantIntValue(numThreads[loopIdx], 0);
|
|
// Degenerate case: take the whole domain.
|
|
if (overflow || isZero) {
|
|
tiledOffsets.push_back(loopRanges[loopIdx].offset);
|
|
tiledSizes.push_back(loopRanges[loopIdx].size);
|
|
continue;
|
|
}
|
|
|
|
// Tiled case: compute the offset and size.
|
|
AffineExpr i, j, m, n, o;
|
|
bindDims(b.getContext(), i, j);
|
|
bindSymbols(b.getContext(), m, n, o);
|
|
OpFoldResult size = loopRanges[loopIdx].size;
|
|
OpFoldResult offset = loopRanges[loopIdx].offset;
|
|
OpFoldResult threadId = threadIds[threadIdIdx];
|
|
// Symbolic fixed max size per thread.
|
|
// TODO: floor + 0/1 depending on case for better load-balancing.
|
|
OpFoldResult tileSizePerThread =
|
|
nominalTileSizes.has_value()
|
|
? (*nominalTileSizes)[loopIdx]
|
|
: makeComposedFoldedAffineApply(
|
|
b, loc, m.ceilDiv(n),
|
|
ArrayRef<OpFoldResult>{size, nonZeroNumThreads[threadIdIdx]});
|
|
|
|
// Dynamic offset shifted by threadId * maxSizePerThread.
|
|
OpFoldResult offsetPerThread = makeComposedFoldedAffineApply(
|
|
b, loc, i + j * m, {offset, threadId, tileSizePerThread});
|
|
// Dynamic upper-bound depending on the threadId.
|
|
OpFoldResult residualTileSize = makeComposedFoldedAffineApply(
|
|
b, loc, i + j * m - n,
|
|
{offset, nonZeroNumThreads[threadIdIdx], tileSizePerThread, size});
|
|
if (!isConstantIntValue(residualTileSize, 0)) {
|
|
OpFoldResult sizeMinusOffsetPerThread = makeComposedFoldedAffineApply(
|
|
b, loc, -i + m, {offsetPerThread, size});
|
|
tileSizePerThread =
|
|
buildMin(b, loc, {sizeMinusOffsetPerThread, tileSizePerThread});
|
|
}
|
|
|
|
tiledOffsets.push_back(offsetPerThread);
|
|
// TODO: if tileSizePerThread <= 0 early exit.
|
|
if (!omitTileOffsetBoundsCheck &&
|
|
!canOmitTileOffsetInBoundsCheck(tileSizePerThread,
|
|
nonZeroNumThreads[threadIdIdx], size))
|
|
tileSizePerThread =
|
|
buildMax(b, loc, {b.getIndexAttr(0), tileSizePerThread});
|
|
|
|
tiledSizes.push_back(tileSizePerThread);
|
|
++threadIdIdx;
|
|
}
|
|
}
|
|
|
|
/// Returns a vector of bools representing if, for each axis, `op` can be tiled
|
|
/// without incurring in a race condition and thus it is thread-safe to do the
|
|
/// tiling. This is checked by iterating over numThreads and ensuring that the
|
|
/// corresponding iterator type is "parallel". If it is not, then we know that
|
|
/// such dimension is unsafe to tile.
|
|
SmallVector<bool> safeToTileToForall(mlir::MLIRContext *ctx, LinalgOp linalgOp,
|
|
ArrayRef<OpFoldResult> numThreads) {
|
|
auto iterators = linalgOp.getIteratorTypesArray();
|
|
SmallVector<bool> safeToTile(numThreads.size(), true);
|
|
|
|
for (unsigned i = 0, e = numThreads.size(); i != e; i++) {
|
|
if (auto attr = llvm::dyn_cast_if_present<Attribute>(numThreads[i])) {
|
|
if (cast<IntegerAttr>(attr).getValue().getSExtValue() > 1) {
|
|
safeToTile[i] = iterators[i] == utils::IteratorType::parallel;
|
|
}
|
|
} else {
|
|
safeToTile[i] = iterators[i] == utils::IteratorType::parallel;
|
|
}
|
|
}
|
|
return safeToTile;
|
|
}
|
|
|
|
/// Rewrite a TilingInterface `op` to a tiled `scf.forall`. The
|
|
/// tiling is specified by the number of tiles/threads `numThreads` and the
|
|
/// optional nominal tile size `nominalTileSizes`. If `nominalTilSizes` is
|
|
/// not specified, then it is derived from `numThreads` as `ceilDiv(dimSize[i],
|
|
/// numThreads[i])`. If non-empty, the `mapping` is added as an
|
|
/// attribute to the resulting `scf.forall`. A zero tile sizes indicate
|
|
/// that the dimension is not tiled, and can be thought of as tiling by the full
|
|
/// size of data.
|
|
/// It is the user's responsibility to ensure that `numThreads` is a valid
|
|
/// tiling specification (i.e. that only tiles parallel dimensions, e.g. in the
|
|
/// Linalg case). If the dimension is not parallelizable, a warning is issued to
|
|
/// notify the user that the generated code is not safe to parallelize. If
|
|
/// `omitTileOffsetBoundsCheck` is true, then the function will assume that
|
|
/// `tileSize[i] * (numThread[i] -1) <= dimSize[i]` holds.
|
|
static FailureOr<ForallTilingResult> tileToForallOpImpl(
|
|
RewriterBase &b, TilingInterface op, ArrayRef<OpFoldResult> numThreads,
|
|
std::optional<ArrayRef<OpFoldResult>> nominalTileSizes,
|
|
std::optional<ArrayAttr> mapping, bool omitTileOffsetBoundsCheck) {
|
|
Location loc = op->getLoc();
|
|
OpBuilder::InsertionGuard g(b);
|
|
|
|
SmallVector<Range> loopRanges = op.getIterationDomain(b);
|
|
if (loopRanges.empty())
|
|
return op->emitOpError("expected non-empty loop ranges");
|
|
auto hasStrideOne = [](Range r) { return !isConstantIntValue(r.stride, 1); };
|
|
if (llvm::any_of(loopRanges, hasStrideOne))
|
|
return op->emitOpError("only stride-1 supported atm");
|
|
|
|
// Gather destination tensors.
|
|
SmallVector<Value> dest;
|
|
if (failed(tensor::getOrCreateDestinations(b, loc, op, dest)))
|
|
return op->emitOpError("failed to get destination tensors");
|
|
|
|
SmallVector<OpFoldResult> nonZeroNumThreads =
|
|
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
|
|
return !isConstantIntValue(ofr, 0);
|
|
}));
|
|
SmallVector<Value> materializedNonZeroNumThreads =
|
|
llvm::to_vector(llvm::map_range(nonZeroNumThreads, [&](OpFoldResult ofr) {
|
|
return getValueOrCreateConstantIndexOp(b, loc, ofr);
|
|
}));
|
|
|
|
LinalgOp linalgOp = dyn_cast<LinalgOp>(op.getOperation());
|
|
if (linalgOp) {
|
|
// Check if tiling is thread safe and print a warning if not.
|
|
SmallVector<bool> tilingSafety =
|
|
safeToTileToForall(b.getContext(), linalgOp, numThreads);
|
|
for (size_t i = 0; i < tilingSafety.size(); i++)
|
|
if (!tilingSafety[i])
|
|
op.emitWarning() << "tiling is not thread safe at axis #" << i;
|
|
}
|
|
|
|
// 1. Create the ForallOp. We don't use the lambda body-builder
|
|
// version because we require the use of RewriterBase in the body, so we
|
|
// manually move the insertion point to the body below.
|
|
scf::ForallOp forallOp = b.create<scf::ForallOp>(
|
|
loc, getAsOpFoldResult((materializedNonZeroNumThreads)), dest, mapping);
|
|
|
|
// 2. Fill out the ForallOp body.
|
|
SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
|
|
calculateTileOffsetsAndSizes(b, loc, forallOp, numThreads, loopRanges,
|
|
omitTileOffsetBoundsCheck, nominalTileSizes,
|
|
tiledOffsets, tiledSizes);
|
|
|
|
// 3. Clone the tileable op and update its destination operands to use the
|
|
// output bbArgs of the ForallOp.
|
|
ArrayRef<BlockArgument> destBbArgs = forallOp.getRegionIterArgs();
|
|
Operation *tiledOp = nullptr;
|
|
SmallVector<Value> tiledValues;
|
|
{
|
|
// 3.a. RAII guard, inserting within forallOp, before terminator.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(forallOp.getTerminator());
|
|
Operation *clonedOp = b.clone(*op.getOperation());
|
|
auto destinationStyleOp = dyn_cast<DestinationStyleOpInterface>(clonedOp);
|
|
if (destinationStyleOp) {
|
|
for (OpOperand &outOperand : destinationStyleOp.getDpsInitsMutable()) {
|
|
// Swap tensor inits with the corresponding block argument of the
|
|
// scf.forall op. Memref inits remain as is.
|
|
if (outOperand.get().getType().isa<TensorType>()) {
|
|
auto *it = llvm::find(dest, outOperand.get());
|
|
assert(it != dest.end() && "could not find destination tensor");
|
|
unsigned destNum = std::distance(dest.begin(), it);
|
|
outOperand.set(destBbArgs[destNum]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// 4. Tile the cloned op and delete the clone.
|
|
FailureOr<TilingResult> tilingResult =
|
|
cast<TilingInterface>(clonedOp).getTiledImplementation(b, tiledOffsets,
|
|
tiledSizes);
|
|
if (failed(tilingResult))
|
|
return clonedOp->emitError("Failed to tile op: ");
|
|
if (tilingResult->tiledOps.size() != 1) {
|
|
return clonedOp->emitError("expected a single produced tiled op, got ")
|
|
<< tilingResult->tiledOps.size();
|
|
}
|
|
|
|
b.eraseOp(clonedOp);
|
|
tiledOp = tilingResult->tiledOps.front();
|
|
tiledValues = tilingResult->tiledValues;
|
|
}
|
|
|
|
// 5. Parallel insert back into the result tensor.
|
|
for (auto it : llvm::zip(llvm::seq(unsigned(0), unsigned(dest.size())),
|
|
tiledValues, destBbArgs)) {
|
|
// 5.a. Partial subset information is inserted just before the terminator.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(forallOp.getTerminator());
|
|
|
|
SmallVector<OpFoldResult> resultOffsets, resultSizes;
|
|
if (failed(op.getResultTilePosition(b, std::get<0>(it), tiledOffsets,
|
|
tiledSizes, resultOffsets,
|
|
resultSizes)))
|
|
return op->emitOpError("output offsets couldn't be calculated");
|
|
SmallVector<OpFoldResult> strides(resultSizes.size(), b.getIndexAttr(1));
|
|
|
|
// 5.b. Parallel insertions are inserted at the end of the combining
|
|
// terminator.
|
|
b.setInsertionPointToEnd(forallOp.getTerminator().getBody());
|
|
b.create<tensor::ParallelInsertSliceOp>(loc, std::get<1>(it),
|
|
std::get<2>(it), resultOffsets,
|
|
resultSizes, strides);
|
|
}
|
|
return ForallTilingResult{forallOp, tiledOp};
|
|
}
|
|
|
|
FailureOr<ForallTilingResult>
|
|
linalg::tileToForallOp(RewriterBase &b, TilingInterface op,
|
|
ArrayRef<OpFoldResult> numThreads,
|
|
std::optional<ArrayAttr> mapping) {
|
|
return tileToForallOpImpl(b, op, numThreads,
|
|
/*nominalTileSizes=*/std::nullopt, mapping,
|
|
/*omitTileOffsetBoundsCheck=*/false);
|
|
}
|
|
|
|
FailureOr<ForallTilingResult>
|
|
linalg::tileToForallOpUsingTileSizes(RewriterBase &b, TilingInterface op,
|
|
ArrayRef<OpFoldResult> tileSizes,
|
|
std::optional<ArrayAttr> mapping) {
|
|
SmallVector<Range> loopRanges = op.getIterationDomain(b);
|
|
unsigned nLoops = loopRanges.size();
|
|
SmallVector<OpFoldResult> numThreads;
|
|
numThreads.reserve(nLoops);
|
|
AffineExpr s0, s1;
|
|
bindSymbols(b.getContext(), s0, s1);
|
|
AffineExpr divExpr = s0.ceilDiv(s1);
|
|
for (const auto &it : llvm::zip(tileSizes, loopRanges)) {
|
|
OpFoldResult numTiles = std::get<0>(it);
|
|
if (!isConstantIntValue(numTiles, 0))
|
|
numTiles = makeComposedFoldedAffineApply(
|
|
b, op.getLoc(), divExpr, {std::get<1>(it).size, std::get<0>(it)});
|
|
numThreads.push_back(numTiles);
|
|
}
|
|
return tileToForallOpImpl(b, op, numThreads,
|
|
/*nominalTileSizes=*/tileSizes, mapping,
|
|
/*omitTileOffsetBoundsCheck=*/true);
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
static FailureOr<TiledLinalgOp>
|
|
tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ArrayRef<OpFoldResult> tileSizes,
|
|
const LinalgTilingOptions &options) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
|
|
auto nLoops = op.getNumLoops();
|
|
// Initial tile sizes may be too big, only take the first nLoops.
|
|
tileSizes = tileSizes.take_front(nLoops);
|
|
|
|
if (llvm::all_of(tileSizes, [](OpFoldResult ofr) {
|
|
return getConstantIntValue(ofr) == static_cast<int64_t>(0);
|
|
})) {
|
|
TiledLinalgOp tiledOp;
|
|
tiledOp.op = cast<LinalgOp>(b.clone(*op.getOperation()));
|
|
tiledOp.tensorResults.assign(tiledOp.op->result_begin(),
|
|
tiledOp.op->result_end());
|
|
return tiledOp;
|
|
}
|
|
|
|
// 1. Build the tiled loop ranges.
|
|
SmallVector<OpFoldResult> allShapeSizes =
|
|
op.createFlatListOfOperandDims(b, op.getLoc());
|
|
AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
|
|
if (!shapeSizesToLoopsMap)
|
|
return failure();
|
|
|
|
auto [loopRanges, loopIndexToRangeIndex] = makeTiledLoopRanges(
|
|
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
|
|
|
|
SmallVector<utils::IteratorType, 4> iteratorTypes;
|
|
for (const auto &attr : enumerate(op.getIteratorTypesArray())) {
|
|
if (loopIndexToRangeIndex.count(attr.index()))
|
|
iteratorTypes.push_back(attr.value());
|
|
}
|
|
// If interchangeVector is empty, use the identity. Build the permutation map
|
|
// otherwise.
|
|
auto invPermutationMap =
|
|
AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
|
|
if (!options.interchangeVector.empty()) {
|
|
// Based on the pruned iterations (due to zero tile size), recompute the
|
|
// interchange vector.
|
|
SmallVector<unsigned, 4> interchangeVector;
|
|
interchangeVector.reserve(options.interchangeVector.size());
|
|
for (auto pos : options.interchangeVector) {
|
|
auto it = loopIndexToRangeIndex.find(pos);
|
|
if (it == loopIndexToRangeIndex.end())
|
|
continue;
|
|
interchangeVector.push_back(it->second);
|
|
}
|
|
// Interchange vector is guaranteed to be a permutation,
|
|
// `inversePermutation` must succeed.
|
|
invPermutationMap = inversePermutation(
|
|
AffineMap::getPermutationMap(interchangeVector, b.getContext()));
|
|
assert(invPermutationMap);
|
|
SmallVector<int64_t> permutation(interchangeVector.begin(),
|
|
interchangeVector.end());
|
|
applyPermutationToVector(loopRanges, permutation);
|
|
applyPermutationToVector(iteratorTypes, permutation);
|
|
}
|
|
|
|
// Handle distribution. Create a vector of the same size of loops that are to
|
|
// be tiled.
|
|
SmallVector<linalg::ProcInfo> procInfo;
|
|
if (options.distribution) {
|
|
procInfo.resize(
|
|
iteratorTypes.size(),
|
|
linalg::ProcInfo{nullptr, nullptr, linalg::DistributionMethod::None});
|
|
// Collect loop ranges of tiled loops, loops that are parallel.
|
|
SmallVector<Range> parallelLoopRanges;
|
|
for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
|
|
if (!isParallelIterator(iteratorType.value()))
|
|
break;
|
|
parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
|
|
}
|
|
auto returnedProcInfo =
|
|
options.distribution->procInfo(b, op.getLoc(), parallelLoopRanges);
|
|
unsigned procIdIdx = 0;
|
|
// Update the distribution information for the loops.
|
|
for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
|
|
if (!isParallelIterator(iteratorType.value()))
|
|
break;
|
|
procInfo[iteratorType.index()] = returnedProcInfo[procIdIdx++];
|
|
}
|
|
}
|
|
|
|
// 2. Create the tiled loops.
|
|
LinalgOp res = op;
|
|
SmallVector<Value, 4> ivs, tensorResults;
|
|
auto tiledLoopBodyBuilder =
|
|
[&](OpBuilder &builder, Location loc, ValueRange localIvs,
|
|
ValueRange operandValuesToUse) -> scf::ValueVector {
|
|
ivs.assign(localIvs.begin(), localIvs.end());
|
|
|
|
// When an `interchangeVector` is present, it has been applied to the
|
|
// loop ranges and the iterator types. Apply its inverse to the
|
|
// resulting loop `ivs` to match the op definition.
|
|
SmallVector<Value, 4> interchangedIvs;
|
|
if (!options.interchangeVector.empty()) {
|
|
for (AffineExpr result : invPermutationMap.getResults())
|
|
interchangedIvs.push_back(
|
|
ivs[cast<AffineDimExpr>(result).getPosition()]);
|
|
} else {
|
|
interchangedIvs.assign(ivs.begin(), ivs.end());
|
|
}
|
|
|
|
// Tile the `operandValuesToUse` that either match the `op` operands
|
|
// themselves or the tile loop arguments forwarding them.
|
|
assert(operandValuesToUse.size() ==
|
|
static_cast<size_t>(op->getNumOperands()) &&
|
|
"expect the number of operands and inputs and outputs to match");
|
|
SmallVector<Value> valuesToTile = operandValuesToUse;
|
|
SmallVector<OpFoldResult> sizeBounds =
|
|
makeComposedFoldedMultiResultAffineApply(b, loc, shapeSizesToLoopsMap,
|
|
allShapeSizes);
|
|
SmallVector<Value> tiledOperands = makeTiledShapes(
|
|
b, loc, op, valuesToTile, getAsOpFoldResult(interchangedIvs), tileSizes,
|
|
sizeBounds,
|
|
/*omitPartialTileCheck=*/false);
|
|
|
|
SmallVector<Type> resultTensorTypes =
|
|
getTensorOutputTypes(op, tiledOperands);
|
|
res = clone(b, op, resultTensorTypes, tiledOperands);
|
|
tensorResults =
|
|
insertSlicesBack(builder, loc, op, tiledOperands, res->getResults());
|
|
return scf::ValueVector(tensorResults.begin(), tensorResults.end());
|
|
};
|
|
GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
|
|
tiledLoopBodyBuilder, procInfo);
|
|
|
|
// 3. Transform IndexOp results w.r.t. the tiling.
|
|
transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
|
|
|
|
// 4. Gather the newly created loops and return them with the new op.
|
|
SmallVector<Operation *, 8> loops;
|
|
loops.reserve(ivs.size());
|
|
for (auto iv : ivs) {
|
|
if (isa<BlockArgument>(iv)) {
|
|
loops.push_back(cast<BlockArgument>(iv).getOwner()->getParentOp());
|
|
assert(loops.back() && "no owner found for induction variable!");
|
|
} else {
|
|
// TODO: Instead of doing this, try to recover the ops used instead of the
|
|
// loop.
|
|
loops.push_back(nullptr);
|
|
}
|
|
}
|
|
|
|
// 5. Get the tensor results from the outermost loop if available. Otherwise
|
|
// use the previously captured `tensorResults`.
|
|
Operation *outermostLoop = nullptr;
|
|
for (Operation *loop : loops)
|
|
if ((outermostLoop = loop))
|
|
break;
|
|
|
|
return TiledLinalgOp{
|
|
res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
|
|
}
|
|
|
|
FailureOr<linalg::ForallReductionTilingResult> linalg::tileReductionUsingForall(
|
|
RewriterBase &b, PartialReductionOpInterface op,
|
|
ArrayRef<OpFoldResult> numThreads, ArrayRef<OpFoldResult> tileSizes,
|
|
std::optional<ArrayAttr> mapping) {
|
|
Location loc = op.getLoc();
|
|
OpBuilder::InsertionGuard g(b);
|
|
|
|
// Ops implementing PartialReductionOpInterface are expected to implement
|
|
// TilingInterface.
|
|
// TODO: proper core mechanism to tie interfaces together.
|
|
auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
|
|
|
|
// Ops implementing PartialReductionOpInterface are not necessarily expected
|
|
// to implement TilingInterface.. This cast is unsafe atm.
|
|
// TODO: proper core mechanism to tie interfaces together.
|
|
// TODO: this function requires a pair of interfaces ..
|
|
auto destinationStyleOp =
|
|
dyn_cast<DestinationStyleOpInterface>(op.getOperation());
|
|
if (!destinationStyleOp)
|
|
return b.notifyMatchFailure(op, "not a destination style op");
|
|
|
|
// Actually this only work for Linalg ops atm.
|
|
auto linalgOp = dyn_cast<linalg::LinalgOp>(op.getOperation());
|
|
if (!linalgOp)
|
|
return b.notifyMatchFailure(op, "not a linalg op");
|
|
|
|
SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
|
|
if (op->getNumResults() != 1)
|
|
return b.notifyMatchFailure(
|
|
op, "don't support ops with multiple results for now");
|
|
|
|
SmallVector<utils::IteratorType> iterators =
|
|
tilingInterfaceOp.getLoopIteratorTypes();
|
|
SmallVector<unsigned> redDims;
|
|
linalgOp.getReductionDims(redDims);
|
|
if (redDims.size() != 1)
|
|
return b.notifyMatchFailure(
|
|
op, "only support ops with one reduction dimension.");
|
|
if (!tileSizes.empty() && tileSizes.size() != numThreads.size())
|
|
return b.notifyMatchFailure(op, "if tile sizes are present it must have as "
|
|
"many elements as number of threads");
|
|
int reductionDim = static_cast<int>(redDims.front());
|
|
|
|
if (redDims.front() >= numThreads.size())
|
|
return b.notifyMatchFailure(
|
|
op, "reduction dimension must be mapped to threads");
|
|
|
|
// 1. Create the inital tensor value.
|
|
FailureOr<Operation *> identityTensor =
|
|
op.generateInitialTensorForPartialReduction(b, loc, numThreads,
|
|
reductionDim);
|
|
if (failed(identityTensor))
|
|
return b.notifyMatchFailure(op,
|
|
"cannot create a tensor of identity value.");
|
|
|
|
// Gather destination tensors.
|
|
SmallVector<Value> dest;
|
|
if (failed(tensor::getOrCreateDestinations(b, loc, op, dest)))
|
|
return b.notifyMatchFailure(op, "failed to get destination tensors");
|
|
|
|
Operation *tiledOp = nullptr;
|
|
|
|
SmallVector<OpFoldResult> nonZeroNumThreads =
|
|
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
|
|
return !isConstantIntValue(ofr, 0);
|
|
}));
|
|
SmallVector<Value> materializedNonZeroNumThreads =
|
|
getValueOrCreateConstantIndexOp(b, loc, nonZeroNumThreads);
|
|
|
|
// 2. Create the ForallOp with an empty region.
|
|
scf::ForallOp forallOp = b.create<scf::ForallOp>(
|
|
loc, getAsOpFoldResult(materializedNonZeroNumThreads),
|
|
(*identityTensor)->getResults(), mapping);
|
|
|
|
// 3. Calculate the tile offsets and sizes for the subsequent loop that will
|
|
// be nested under `forallOp`.
|
|
SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
|
|
calculateTileOffsetsAndSizes(b, loc, forallOp, numThreads, iterationDomain,
|
|
/*omitTileOffsetBoundsCheck =*/false,
|
|
/*nominalTileSizes=*/std::nullopt, tiledOffsets,
|
|
tiledSizes);
|
|
|
|
// 4. Clone the tileable op and update its destination operands to use the
|
|
// output bbArgs of the ForallOp.
|
|
SmallVector<Value> tilingResults;
|
|
ArrayRef<BlockArgument> destBbArgs = forallOp.getRegionIterArgs();
|
|
{
|
|
// 4.a. RAII guard, inserting within forallOp, before terminator.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(forallOp.getTerminator());
|
|
|
|
SmallVector<Value> tiledDpsInitOperands;
|
|
for (Value initOperand : destinationStyleOp.getDpsInits()) {
|
|
auto *it = llvm::find(dest, initOperand);
|
|
assert(it != dest.end() && "dest operand not found in dest");
|
|
unsigned destNum = std::distance(dest.begin(), it);
|
|
SmallVector<OpFoldResult> strides(numThreads.size(), b.getIndexAttr(1));
|
|
SmallVector<OpFoldResult> outOffsets(numThreads.size(),
|
|
b.getIndexAttr(0));
|
|
SmallVector<OpFoldResult> sizes = tiledSizes;
|
|
sizes[reductionDim] = b.getIndexAttr(1);
|
|
outOffsets[reductionDim] = forallOp.getInductionVars().front();
|
|
// TODO: use SubsetExtractOpInterface once it is available.
|
|
tiledDpsInitOperands.push_back(b.create<tensor::ExtractSliceOp>(
|
|
loc, cast<RankedTensorType>(initOperand.getType()),
|
|
destBbArgs[destNum], outOffsets, sizes, strides));
|
|
}
|
|
|
|
// 4.b. Clone the op and update init operands.
|
|
// We cannot use a IRMapping here because it can replace
|
|
// different OpOperands with the same value.
|
|
Operation *clonedOp = b.clone(*op.getOperation());
|
|
b.modifyOpInPlace(clonedOp, [&]() {
|
|
for (auto [initOperandPtr, tiledInitValue] : llvm::zip_equal(
|
|
cast<DestinationStyleOpInterface>(clonedOp).getDpsInitsMutable(),
|
|
tiledDpsInitOperands)) {
|
|
initOperandPtr.set(tiledInitValue);
|
|
}
|
|
});
|
|
|
|
// 5. Tile the cloned op and delete the clone.
|
|
if (tileSizes.empty()) {
|
|
FailureOr<TilingResult> tilingResult =
|
|
cast<TilingInterface>(clonedOp).getTiledImplementation(
|
|
b, tiledOffsets, tiledSizes);
|
|
if (failed(tilingResult))
|
|
return clonedOp->emitError("Failed to tile op: ");
|
|
if (tilingResult->tiledOps.size() != 1) {
|
|
return clonedOp->emitError("expected a single produced tiled op, got ")
|
|
<< tilingResult->tiledOps.size();
|
|
}
|
|
tiledOp = tilingResult->tiledOps.front();
|
|
tilingResults = tilingResult->tiledValues;
|
|
} else {
|
|
LinalgTilingOptions options;
|
|
FailureOr<TiledLinalgOp> maybeTiled = tileLinalgOpImpl<scf::ForOp>(
|
|
b, cast<LinalgOp>(clonedOp), tileSizes, options);
|
|
if (failed(maybeTiled))
|
|
return b.notifyMatchFailure(op, "failed tileLinalgOpImpl");
|
|
|
|
SmallVector<Value> ids = forallOp.getInductionVars();
|
|
mapLoopToProcessorIds(cast<scf::ForOp>(maybeTiled->loops.back()), ids,
|
|
materializedNonZeroNumThreads);
|
|
if (maybeTiled->loops.size() != 1) {
|
|
return clonedOp->emitError("expected a single produced loop");
|
|
}
|
|
tiledOp = maybeTiled->op;
|
|
tilingResults = maybeTiled->loops.front()->getResults();
|
|
}
|
|
|
|
b.eraseOp(clonedOp);
|
|
}
|
|
|
|
// 6. Insert the partial reductions back into a new tensor.
|
|
for (auto [index, result, bbArg] : llvm::zip(
|
|
llvm::seq<unsigned>(0, dest.size()), tilingResults, destBbArgs)) {
|
|
// 6.a. Partial subset information is inserted just before the terminator.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(forallOp.getTerminator());
|
|
|
|
SmallVector<OpFoldResult> resultOffsets, resultSizes;
|
|
if (failed(tilingInterfaceOp.getResultTilePosition(
|
|
b, index, tiledOffsets, tiledSizes, resultOffsets, resultSizes)))
|
|
return op->emitOpError("output offsets couldn't be calculated");
|
|
SmallVector<OpFoldResult> resultOffsetsRank, resultSizesRank;
|
|
int64_t offIdx = 0;
|
|
int64_t sizeIdx = 0;
|
|
for (int64_t i = 0, e = numThreads.size(); i < e; ++i) {
|
|
if (i == reductionDim) {
|
|
resultOffsetsRank.push_back(forallOp.getInductionVars().front());
|
|
resultSizesRank.push_back(b.getIndexAttr(1));
|
|
continue;
|
|
}
|
|
resultOffsetsRank.push_back(resultOffsets[offIdx++]);
|
|
resultSizesRank.push_back(resultSizes[sizeIdx++]);
|
|
}
|
|
SmallVector<OpFoldResult> strides(resultSizesRank.size(),
|
|
b.getIndexAttr(1));
|
|
|
|
// 6.b. Parallel insertions are inserted at the end of the combining
|
|
// terminator.
|
|
b.setInsertionPointToEnd(forallOp.getTerminator().getBody());
|
|
b.create<tensor::ParallelInsertSliceOp>(
|
|
loc, result, bbArg, resultOffsetsRank, resultSizesRank, strides);
|
|
}
|
|
|
|
// 7. Merge the partial reductions.
|
|
b.setInsertionPointAfter(forallOp);
|
|
Operation *mergeOp =
|
|
op.mergeReductions(b, loc, forallOp->getResults(), reductionDim);
|
|
b.replaceOp(op, mergeOp->getResults());
|
|
|
|
// 8. Return.
|
|
ForallReductionTilingResult results;
|
|
results.initialOp = *identityTensor;
|
|
results.loops = forallOp;
|
|
results.parallelTiledOp = tiledOp;
|
|
results.mergeOp = mergeOp;
|
|
return results;
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
FailureOr<TiledLinalgOp> static tileLinalgOpImpl(
|
|
RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
|
|
if (!options.tileSizeComputationFunction)
|
|
return failure();
|
|
|
|
// Enforce the convention that "tiling by zero" skips tiling a particular
|
|
// dimension. This convention is significantly simpler to handle instead of
|
|
// adjusting affine maps to account for missing dimensions.
|
|
auto nLoops = op.getNumLoops();
|
|
SmallVector<OpFoldResult> tileSizeVector =
|
|
getAsOpFoldResult(options.tileSizeComputationFunction(b, op));
|
|
if (tileSizeVector.size() < nLoops) {
|
|
tileSizeVector.append(nLoops - tileSizeVector.size(), b.getIndexAttr(0));
|
|
}
|
|
|
|
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
|
|
}
|
|
|
|
FailureOr<TiledLinalgOp>
|
|
mlir::linalg::tileLinalgOp(RewriterBase &b, LinalgOp op,
|
|
const LinalgTilingOptions &options) {
|
|
switch (options.loopType) {
|
|
case LinalgTilingLoopType::Loops:
|
|
return tileLinalgOpImpl<scf::ForOp>(b, op, options);
|
|
case LinalgTilingLoopType::ParallelLoops:
|
|
return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
|
|
default:;
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
namespace {
|
|
/// Helper classes for type list expansion.
|
|
template <typename... OpTypes>
|
|
class CanonicalizationPatternList;
|
|
|
|
template <>
|
|
class CanonicalizationPatternList<> {
|
|
public:
|
|
static void insert(RewritePatternSet &patterns) {}
|
|
};
|
|
|
|
template <typename OpTy, typename... OpTypes>
|
|
class CanonicalizationPatternList<OpTy, OpTypes...> {
|
|
public:
|
|
static void insert(RewritePatternSet &patterns) {
|
|
OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
|
|
CanonicalizationPatternList<OpTypes...>::insert(patterns);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
RewritePatternSet
|
|
mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
|
|
RewritePatternSet patterns(ctx);
|
|
populateLinalgTilingCanonicalizationPatterns(patterns);
|
|
return patterns;
|
|
}
|
|
|
|
void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
|
|
RewritePatternSet &patterns) {
|
|
auto *ctx = patterns.getContext();
|
|
affine::AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
|
|
affine::AffineForOp::getCanonicalizationPatterns(patterns, ctx);
|
|
affine::AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
|
|
affine::AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
|
|
arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
|
|
memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
|
|
scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::EmptyOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::PadOp::getCanonicalizationPatterns(patterns, ctx);
|
|
ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
|
|
|
|
CanonicalizationPatternList<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
>::insert(patterns);
|
|
}
|