The tosa-infer-shapes pass inserts tensor.cast operations to mediate
refined result types with consumers whose types cannot be refined. This
process interferes with how types are refined in tosa.while_loop body
regions, where types are propagated speculatively (to determine the
types of the tosa.yield terminator) and then reverted.
The new tosa.cast operations result in a crash due to not having types
associated to them for the reversion process.
This change modifies the shape propagation behavior so that the
introduction to tensor.cast operations behaves better with this type
reversion process. The new behavior is to only introduce tensor.cast
operations once we wish to commit the newly computed types to the IR.
This is an example causing the crash:
```mlir
func.func @while_dont_crash(%arg0 : tensor<i32>) -> (tensor<*xi32>) {
%0 = tosa.add %arg0, %arg0 : (tensor<i32>, tensor<i32>) -> tensor<*xi32>
%1 = tosa.while_loop (%arg1 = %0) : (tensor<*xi32>) -> tensor<*xi32> {
%2 = "tosa.const"() <{value = dense<3> : tensor<i32>}> : () -> tensor<i32>
%3 = tosa.greater_equal %2, %arg1 : (tensor<i32>, tensor<*xi32>) -> tensor<*xi1>
tosa.yield %3 : tensor<*xi1>
} do {
^bb0(%arg1: tensor<*xi32>):
// Inferrable operation whose type will refine to tensor<i32>
%3 = tosa.add %arg1, %arg1 : (tensor<*xi32>, tensor<*xi32>) -> tensor<*xi32>
// Non-inferrable use site, will require the cast:
// tensor.cast %3 : tensor<i32> to tensor<*xi32>
//
// The new cast operation will result in accessing undefined memory through
// originalTypeMap in the C++ code.
"use"(%3) : (tensor<*xi32>) -> ()
tosa.yield %3 : tensor<*xi32>
}
return %1 : tensor<*xi32>
}
```
The `tensor.cast` operation inserted in the loop body causes a failure
in the code which resets the types after propagation through the loop
body:
```c++
// The types inferred in the block assume the operand types specified for
// this iteration. We need to restore the original types to ensure that
// future iterations only use the already specified types, not possible
// types from previous iterations.
for (auto &block : bodyRegion) {
for (auto arg : block.getArguments())
arg.setType(originalTypeMap[arg]);
for (auto &op : block)
for (auto result : op.getResults())
result.setType(originalTypeMap[result]); // problematic access
}
```
---------
Co-authored-by: Spenser Bauman <sabauma@fastmail>
304 lines
10 KiB
C++
304 lines
10 KiB
C++
//===- TosaInferShapes.cpp ------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Propogate shapes forward along TOSA operations to resolve dynamic shape
|
|
// operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
|
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/Interfaces/InferTypeOpInterface.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
namespace mlir {
|
|
namespace tosa {
|
|
#define GEN_PASS_DEF_TOSAINFERSHAPES
|
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h.inc"
|
|
} // namespace tosa
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tosa;
|
|
|
|
namespace {
|
|
|
|
// Check whether this use case is replaceable. We define an op as
|
|
// being replaceable if it is used by a TosaOp, or an op with a
|
|
// type-inference related interface.
|
|
// When a non-replaceable use is encountered, the value is wrapped in a
|
|
// cast back to the original type after inference.
|
|
bool isReplaceableUser(Operation *user) {
|
|
// Handle unregistered dialects.
|
|
if (!user->getDialect())
|
|
return false;
|
|
|
|
return user->getDialect()->getNamespace() ==
|
|
TosaDialect::getDialectNamespace() ||
|
|
isa<InferTypeOpInterface, InferShapedTypeOpInterface>(user);
|
|
}
|
|
|
|
// During type propagation, the types of values in the operator graph are
|
|
// updated. For the tosa.while_loop operation, types are speculatively updated
|
|
// within the body region to determine the output type of the while_loop. This
|
|
// process is performed until a fixed point is reached, then the types are
|
|
// reverted.
|
|
//
|
|
// This class encapsulates the state information needed to perform the reversion
|
|
// process or to commit to the final changes.
|
|
class TypeModificationState {
|
|
public:
|
|
TypeModificationState() = default;
|
|
|
|
~TypeModificationState() {
|
|
// Ensure the recorded modifications are either committed or reverted.
|
|
assert(oldTypes.empty() && "unhandled type modifications");
|
|
}
|
|
|
|
// Update the state of the value and record the old type.
|
|
void setType(Value value, Type type) {
|
|
if (value.getType() != type) {
|
|
oldTypes.emplace_back(value, value.getType());
|
|
value.setType(type);
|
|
}
|
|
}
|
|
|
|
// Revert changes made to the types in the IR by setting all the affected
|
|
// values to their old types.
|
|
void revert() {
|
|
// Otherwise revert the changes.
|
|
for (auto [value, type] : oldTypes)
|
|
value.setType(type);
|
|
|
|
oldTypes.clear();
|
|
}
|
|
|
|
// Commit the changes to the types in the IR.
|
|
// This requires inserting tensor.cast operations to mediate the newly
|
|
// inferred result types with users that do not support type inference.
|
|
void commit() {
|
|
// For each use whose type changed, cast the value with the new type back to
|
|
// the old type.
|
|
for (auto [value, oldType] : oldTypes) {
|
|
for (auto &use : value.getUses()) {
|
|
if (isReplaceableUser(use.getOwner()))
|
|
continue;
|
|
|
|
OpBuilder builder(value.getContext());
|
|
builder.setInsertionPoint(use.getOwner());
|
|
|
|
Location loc = value.getLoc();
|
|
use.set(builder.create<tensor::CastOp>(loc, oldType, value));
|
|
}
|
|
}
|
|
|
|
oldTypes.clear();
|
|
}
|
|
|
|
private:
|
|
// A record of each value whose type was updated along with that value's
|
|
// previous type.
|
|
llvm::SmallVector<std::pair<Value, Type>> oldTypes;
|
|
};
|
|
|
|
void propagateShapesInRegion(Region ®ion, TypeModificationState &state);
|
|
|
|
void propagateShapesToTosaIf(Operation &op, TypeModificationState &state) {
|
|
IfOp ifOp = dyn_cast<IfOp>(op);
|
|
if (!ifOp)
|
|
return;
|
|
|
|
for (auto ®ion : op.getRegions()) {
|
|
Block &frontBlock = region.front();
|
|
if (frontBlock.getNumArguments() + 1 != ifOp.getNumOperands())
|
|
return;
|
|
|
|
for (unsigned int i = 1, s = op.getNumOperands(); i < s; i++) {
|
|
auto inferredTy = cast<ShapedType>(op.getOperand(i).getType());
|
|
auto blockArg = frontBlock.getArgument(i - 1);
|
|
auto oldType = cast<ShapedType>(blockArg.getType());
|
|
|
|
if (inferredTy.hasRank()) {
|
|
Type newType = oldType.clone(inferredTy.getShape());
|
|
state.setType(blockArg, newType);
|
|
}
|
|
}
|
|
|
|
for (int i = 0, e = frontBlock.getNumArguments(); i < e; i++) {
|
|
ValueKnowledge operandKnowledge = ValueKnowledge::getKnowledgeFromType(
|
|
ifOp.getOperand(i + 1).getType());
|
|
ValueKnowledge blockKnowledge = ValueKnowledge::getKnowledgeFromType(
|
|
frontBlock.getArgument(i).getType());
|
|
ValueKnowledge joinedKnowledge =
|
|
ValueKnowledge::join(operandKnowledge, blockKnowledge);
|
|
if (!joinedKnowledge)
|
|
continue;
|
|
state.setType(frontBlock.getArgument(i), joinedKnowledge.getType());
|
|
}
|
|
|
|
propagateShapesInRegion(region, state);
|
|
}
|
|
}
|
|
|
|
void propagateShapesToTosaWhile(Operation &op, TypeModificationState &state) {
|
|
WhileOp whileOp = dyn_cast<WhileOp>(op);
|
|
if (!whileOp)
|
|
return;
|
|
|
|
// Determine what the expected argument types are to the cond/body blocks.
|
|
// The expected arguments should be compatible with ever iteration of the
|
|
// loop body / condition for tosa.while.
|
|
SmallVector<Type> argTypes = llvm::to_vector(op.getOperandTypes());
|
|
|
|
bool hasNewTypes = true;
|
|
while (hasNewTypes) {
|
|
TypeModificationState localState;
|
|
|
|
// Set types on the block args.
|
|
Region &bodyRegion = op.getRegion(1);
|
|
Block &block = bodyRegion.front();
|
|
for (int i = 0, s = argTypes.size(); i < s; i++) {
|
|
localState.setType(block.getArgument(i), argTypes[i]);
|
|
}
|
|
|
|
// Propagate to the end.
|
|
propagateShapesInRegion(bodyRegion, localState);
|
|
|
|
// Find all the tosa yield types and verify there is a single one.
|
|
llvm::SmallVector<YieldOp> yieldOps;
|
|
for (auto &block : bodyRegion)
|
|
if (auto yieldOp = dyn_cast<YieldOp>(block.getTerminator()))
|
|
yieldOps.push_back(yieldOp);
|
|
|
|
assert(yieldOps.size() == 1 && "missing or non-unique yield op");
|
|
// Using the new tosa.yield operand types, infer the new subtypes.
|
|
llvm::SmallVector<ValueKnowledge> yieldTypeInfo;
|
|
for (auto ty : argTypes) {
|
|
yieldTypeInfo.push_back(ValueKnowledge::getKnowledgeFromType(ty));
|
|
}
|
|
|
|
for (auto yieldOp : yieldOps) {
|
|
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
|
|
auto newKnowledge =
|
|
ValueKnowledge::getKnowledgeFromType(it.value().getType());
|
|
yieldTypeInfo[it.index()] =
|
|
ValueKnowledge::meet(yieldTypeInfo[it.index()], newKnowledge);
|
|
}
|
|
}
|
|
|
|
// This should never happen.
|
|
if (yieldTypeInfo.size() != argTypes.size()) {
|
|
op.emitWarning("has a tosa.yield with the incorrect number of operands");
|
|
return;
|
|
}
|
|
|
|
// Determine the new block args and see if any changed.
|
|
hasNewTypes = false;
|
|
for (int i = 0, s = yieldTypeInfo.size(); i < s; i++) {
|
|
Type newType = yieldTypeInfo[i].getType();
|
|
hasNewTypes |= (newType != argTypes[i]);
|
|
argTypes[i] = newType;
|
|
}
|
|
|
|
// Revert all changes made during the speculative part of the algorithm.
|
|
localState.revert();
|
|
}
|
|
|
|
// We now set the block arguments according to the most recent shape
|
|
// inference results. This gives us the block arg types for the next
|
|
// iteration.
|
|
for (auto ®ion : op.getRegions()) {
|
|
for (unsigned int i = 0, s = argTypes.size(); i < s; i++) {
|
|
state.setType(region.front().getArgument(i), argTypes[i]);
|
|
}
|
|
|
|
propagateShapesInRegion(region, state);
|
|
}
|
|
}
|
|
|
|
void propagateShapesInRegion(Region ®ion, TypeModificationState &state) {
|
|
for (auto &block : region) {
|
|
for (Operation &op : block) {
|
|
if (!op.getDialect() ||
|
|
op.getDialect()->getNamespace() != TosaDialect::getDialectNamespace())
|
|
continue;
|
|
|
|
propagateShapesToTosaIf(op, state);
|
|
propagateShapesToTosaWhile(op, state);
|
|
|
|
InferShapedTypeOpInterface shapeInterface =
|
|
dyn_cast<InferShapedTypeOpInterface>(op);
|
|
if (!shapeInterface)
|
|
continue;
|
|
|
|
SmallVector<ShapedTypeComponents> returnedShapes;
|
|
|
|
if (shapeInterface
|
|
.inferReturnTypeComponents(
|
|
op.getContext(), op.getLoc(), op.getOperands(),
|
|
op.getDiscardableAttrDictionary(), op.getPropertiesStorage(),
|
|
op.getRegions(), returnedShapes)
|
|
.succeeded()) {
|
|
for (auto it : llvm::zip(op.getResults(), returnedShapes)) {
|
|
Value result = std::get<0>(it);
|
|
ShapedTypeComponents predictedShape = std::get<1>(it);
|
|
|
|
// Determine the knowledge based on the output type.
|
|
// TODO: should also query WIP type probably
|
|
Type resultTy = result.getType();
|
|
auto currentKnowledge =
|
|
ValueKnowledge::getKnowledgeFromType(resultTy);
|
|
|
|
// Compute the knowledge based on the inferred type.
|
|
auto inferredKnowledge = ValueKnowledge::getPessimisticValueState();
|
|
inferredKnowledge.dtype = cast<ShapedType>(resultTy).getElementType();
|
|
inferredKnowledge.hasRank = predictedShape.hasRank();
|
|
if (predictedShape.hasRank()) {
|
|
for (auto dim : predictedShape.getDims()) {
|
|
inferredKnowledge.sizes.push_back(dim);
|
|
}
|
|
}
|
|
|
|
// Compute the new type based on the joined version.
|
|
auto newKnowledge =
|
|
ValueKnowledge::join(currentKnowledge, inferredKnowledge);
|
|
if (!newKnowledge)
|
|
continue;
|
|
|
|
// Set new type
|
|
state.setType(result, newKnowledge.getType());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Pass that performs shape propagation across TOSA operations. This includes
|
|
/// migrating to within the regions of if/while operations.
|
|
struct TosaInferShapes
|
|
: public tosa::impl::TosaInferShapesBase<TosaInferShapes> {
|
|
public:
|
|
void runOnOperation() override {
|
|
func::FuncOp func = getOperation();
|
|
TypeModificationState state;
|
|
propagateShapesInRegion(func.getBody(), state);
|
|
state.commit();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::tosa::createTosaInferShapesPass() {
|
|
return std::make_unique<TosaInferShapes>();
|
|
}
|