The changes in this p.r. mostly center around the tests that use the flag sparse_compiler (also: sparse-compiler).
30 lines
1004 B
MLIR
30 lines
1004 B
MLIR
// RUN: mlir-opt %s --sparsifier="enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
|
|
#MAT_D_C = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : dense, d1 : compressed)
|
|
}>
|
|
|
|
#MAT_C_C_P = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d1 : compressed, d0 : compressed)
|
|
}>
|
|
|
|
#MAT_C_D_P = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d1 : compressed, d0 : dense)
|
|
}>
|
|
|
|
//
|
|
// Ensures only last loop is vectorized
|
|
// (vectorizing the others would crash).
|
|
//
|
|
// CHECK-LABEL: llvm.func @foo
|
|
// CHECK: llvm.intr.masked.load
|
|
// CHECK: llvm.intr.masked.scatter
|
|
//
|
|
func.func @foo(%arg0: tensor<2x4xf64, #MAT_C_C_P>,
|
|
%arg1: tensor<3x4xf64, #MAT_C_D_P>,
|
|
%arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> {
|
|
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
|
|
: tensor<2x4xf64, #MAT_C_C_P>, tensor<3x4xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64>
|
|
return %0 : tensor<9x4xf64>
|
|
}
|