The doc and examples of the [dis]assemble operations did not reflect all the recent changes on order of the operands. Also clarified some of the text.
315 lines
9.7 KiB
MLIR
315 lines
9.7 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#SortedCOO = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
|
|
}>
|
|
|
|
#SortedCOOI32 = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton),
|
|
posWidth = 32,
|
|
crdWidth = 32
|
|
}>
|
|
|
|
#CSR = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : dense, d1 : compressed),
|
|
posWidth = 32,
|
|
crdWidth = 32
|
|
}>
|
|
|
|
#BCOO = #sparse_tensor.encoding<{
|
|
map = (d0, d1, d2) -> (d0 : dense, d1 : loose_compressed(nonunique), d2 : singleton)
|
|
}>
|
|
|
|
module {
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @main() {
|
|
%c0 = arith.constant 0 : index
|
|
%f0 = arith.constant 0.0 : f64
|
|
%i0 = arith.constant 0 : i32
|
|
|
|
//
|
|
// Setup COO.
|
|
//
|
|
|
|
%data = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0 ]
|
|
> : tensor<3xf64>
|
|
|
|
%pos = arith.constant dense<
|
|
[0, 3]
|
|
> : tensor<2xindex>
|
|
|
|
%index = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]]
|
|
> : tensor<3x2xindex>
|
|
|
|
%pos32 = arith.constant dense<
|
|
[0, 3]
|
|
> : tensor<2xi32>
|
|
|
|
%index32 = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]]
|
|
> : tensor<3x2xi32>
|
|
|
|
%s4 = sparse_tensor.assemble (%pos, %index), %data : (tensor<2xindex>, tensor<3x2xindex>), tensor<3xf64>
|
|
to tensor<10x10xf64, #SortedCOO>
|
|
%s5 = sparse_tensor.assemble (%pos32, %index32), %data : (tensor<2xi32>, tensor<3x2xi32>), tensor<3xf64>
|
|
to tensor<10x10xf64, #SortedCOOI32>
|
|
|
|
//
|
|
// Setup CSR.
|
|
//
|
|
|
|
%csr_data = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0 ]
|
|
> : tensor<3xf64>
|
|
|
|
%csr_pos32 = arith.constant dense<
|
|
[0, 1, 3]
|
|
> : tensor<3xi32>
|
|
|
|
%csr_index32 = arith.constant dense<
|
|
[1, 0, 1]
|
|
> : tensor<3xi32>
|
|
%csr = sparse_tensor.assemble (%csr_pos32, %csr_index32), %csr_data : (tensor<3xi32>, tensor<3xi32>), tensor<3xf64>
|
|
to tensor<2x2xf64, #CSR>
|
|
|
|
//
|
|
// Setup BCOO.
|
|
//
|
|
|
|
%bdata = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0, 4.0, 5.0 ]
|
|
> : tensor<5xf64>
|
|
|
|
%bpos = arith.constant dense<
|
|
[0, 3, 3, 5]
|
|
> : tensor<4xindex>
|
|
|
|
%bindex = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8],
|
|
[ 2, 3],
|
|
[ 4, 2],
|
|
[ 10, 10]]
|
|
> : tensor<6x2xindex>
|
|
|
|
%bs = sparse_tensor.assemble (%bpos, %bindex), %bdata :
|
|
(tensor<4xindex>, tensor<6x2xindex>), tensor<5xf64> to tensor<2x10x10xf64, #BCOO>
|
|
|
|
//
|
|
// Verify results.
|
|
//
|
|
|
|
// CHECK: 1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %s4 : tensor<10x10xf64, #SortedCOO> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %s5 : tensor<10x10xf64, #SortedCOOI32> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %csr : tensor<2x2xf64, #CSR> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
//
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:3
|
|
// CHECK-NEXT:4
|
|
//
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:4
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:5
|
|
sparse_tensor.foreach in %bs : tensor<2x10x10xf64, #BCOO> do {
|
|
^bb0(%0: index, %1: index, %2: index, %v: f64) :
|
|
vector.print %0: index
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
//
|
|
// Verify disassemble operations.
|
|
//
|
|
|
|
%od = tensor.empty() : tensor<3xf64>
|
|
%op = tensor.empty() : tensor<2xi32>
|
|
%oi = tensor.empty() : tensor<3x2xi32>
|
|
%p, %i, %d, %pl, %il, %dl = sparse_tensor.disassemble %s5 : tensor<10x10xf64, #SortedCOOI32>
|
|
out_lvls(%op, %oi : tensor<2xi32>, tensor<3x2xi32>)
|
|
out_vals(%od : tensor<3xf64>)
|
|
-> (tensor<2xi32>, tensor<3x2xi32>), tensor<3xf64>, (i32, i64), index
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3 )
|
|
%vd = vector.transfer_read %d[%c0], %f0 : tensor<3xf64>, vector<3xf64>
|
|
vector.print %vd : vector<3xf64>
|
|
|
|
// CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ) )
|
|
%vi = vector.transfer_read %i[%c0, %c0], %i0 : tensor<3x2xi32>, vector<3x2xi32>
|
|
vector.print %vi : vector<3x2xi32>
|
|
|
|
// CHECK-NEXT: 3
|
|
vector.print %dl : index
|
|
|
|
%d_csr = tensor.empty() : tensor<4xf64>
|
|
%p_csr = tensor.empty() : tensor<3xi32>
|
|
%i_csr = tensor.empty() : tensor<3xi32>
|
|
%rp_csr, %ri_csr, %rd_csr, %lp_csr, %li_csr, %ld_csr = sparse_tensor.disassemble %csr : tensor<2x2xf64, #CSR>
|
|
out_lvls(%p_csr, %i_csr : tensor<3xi32>, tensor<3xi32>)
|
|
out_vals(%d_csr : tensor<4xf64>)
|
|
-> (tensor<3xi32>, tensor<3xi32>), tensor<4xf64>, (i32, i64), index
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3 )
|
|
%vd_csr = vector.transfer_read %rd_csr[%c0], %f0 : tensor<4xf64>, vector<3xf64>
|
|
vector.print %vd_csr : vector<3xf64>
|
|
|
|
// CHECK-NEXT: 3
|
|
vector.print %ld_csr : index
|
|
|
|
%bod = tensor.empty() : tensor<6xf64>
|
|
%bop = tensor.empty() : tensor<4xindex>
|
|
%boi = tensor.empty() : tensor<6x2xindex>
|
|
%bp, %bi, %bd, %lp, %li, %ld = sparse_tensor.disassemble %bs : tensor<2x10x10xf64, #BCOO>
|
|
out_lvls(%bop, %boi : tensor<4xindex>, tensor<6x2xindex>)
|
|
out_vals(%bod : tensor<6xf64>)
|
|
-> (tensor<4xindex>, tensor<6x2xindex>), tensor<6xf64>, (i32, tensor<i64>), index
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3, 4, 5 )
|
|
%vbd = vector.transfer_read %bd[%c0], %f0 : tensor<6xf64>, vector<5xf64>
|
|
vector.print %vbd : vector<5xf64>
|
|
|
|
// CHECK-NEXT: 5
|
|
vector.print %ld : index
|
|
|
|
// CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ), ( 2, 3 ), ( 4, 2 ), ( {{.*}}, {{.*}} ) )
|
|
%vbi = vector.transfer_read %bi[%c0, %c0], %c0 : tensor<6x2xindex>, vector<6x2xindex>
|
|
vector.print %vbi : vector<6x2xindex>
|
|
|
|
// CHECK-NEXT: 10
|
|
%si = tensor.extract %li[] : tensor<i64>
|
|
vector.print %si : i64
|
|
|
|
// TODO: This check is no longer needed once the codegen path uses the
|
|
// buffer deallocation pass. "dealloc_tensor" turn into a no-op in the
|
|
// codegen path.
|
|
%has_runtime = sparse_tensor.has_runtime_library
|
|
scf.if %has_runtime {
|
|
// sparse_tensor.assemble copies buffers when running with the runtime
|
|
// library. Deallocations are not needed when running in codegen mode.
|
|
bufferization.dealloc_tensor %s4 : tensor<10x10xf64, #SortedCOO>
|
|
bufferization.dealloc_tensor %s5 : tensor<10x10xf64, #SortedCOOI32>
|
|
bufferization.dealloc_tensor %csr : tensor<2x2xf64, #CSR>
|
|
bufferization.dealloc_tensor %bs : tensor<2x10x10xf64, #BCOO>
|
|
}
|
|
|
|
bufferization.dealloc_tensor %li : tensor<i64>
|
|
bufferization.dealloc_tensor %od : tensor<3xf64>
|
|
bufferization.dealloc_tensor %op : tensor<2xi32>
|
|
bufferization.dealloc_tensor %oi : tensor<3x2xi32>
|
|
bufferization.dealloc_tensor %d_csr : tensor<4xf64>
|
|
bufferization.dealloc_tensor %p_csr : tensor<3xi32>
|
|
bufferization.dealloc_tensor %i_csr : tensor<3xi32>
|
|
bufferization.dealloc_tensor %bod : tensor<6xf64>
|
|
bufferization.dealloc_tensor %bop : tensor<4xindex>
|
|
bufferization.dealloc_tensor %boi : tensor<6x2xindex>
|
|
|
|
return
|
|
}
|
|
}
|