Note that even though the sparse runtime support lib always uses SoA storage for COO storage (and provides correct codegen by means of views into this storage), in some rare cases we need the true physical SoA storage as a coordinate buffer. This PR provides that functionality by means of a (costly) coordinate buffer call. Since this is currently only used for testing/debugging by means of the sparse_tensor.print method, this solution is acceptable. If we ever want a performing version of this, we should truly support AoS storage of COO in addition to the SoA used right now.
327 lines
11 KiB
MLIR
Executable File
327 lines
11 KiB
MLIR
Executable File
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
|
|
#AllDense = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
i : dense,
|
|
j : dense
|
|
)
|
|
}>
|
|
|
|
#AllDenseT = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
j : dense,
|
|
i : dense
|
|
)
|
|
}>
|
|
|
|
#CSR = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
i : dense,
|
|
j : compressed
|
|
)
|
|
}>
|
|
|
|
#DCSR = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
i : compressed,
|
|
j : compressed
|
|
)
|
|
}>
|
|
|
|
#CSC = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
j : dense,
|
|
i : compressed
|
|
)
|
|
}>
|
|
|
|
#DCSC = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
j : compressed,
|
|
i : compressed
|
|
)
|
|
}>
|
|
|
|
#BSR = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
i floordiv 2 : compressed,
|
|
j floordiv 4 : compressed,
|
|
i mod 2 : dense,
|
|
j mod 4 : dense
|
|
)
|
|
}>
|
|
|
|
#BSRC = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
i floordiv 2 : compressed,
|
|
j floordiv 4 : compressed,
|
|
j mod 4 : dense,
|
|
i mod 2 : dense
|
|
)
|
|
}>
|
|
|
|
#BSC = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
j floordiv 4 : compressed,
|
|
i floordiv 2 : compressed,
|
|
i mod 2 : dense,
|
|
j mod 4 : dense
|
|
)
|
|
}>
|
|
|
|
#BSCC = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
j floordiv 4 : compressed,
|
|
i floordiv 2 : compressed,
|
|
j mod 4 : dense,
|
|
i mod 2 : dense
|
|
)
|
|
}>
|
|
|
|
#BSR0 = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
i floordiv 2 : dense,
|
|
j floordiv 4 : compressed,
|
|
i mod 2 : dense,
|
|
j mod 4 : dense
|
|
)
|
|
}>
|
|
|
|
#BSC0 = #sparse_tensor.encoding<{
|
|
map = (i, j) -> (
|
|
j floordiv 4 : dense,
|
|
i floordiv 2 : compressed,
|
|
i mod 2 : dense,
|
|
j mod 4 : dense
|
|
)
|
|
}>
|
|
|
|
#COOAoS = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
|
|
}>
|
|
|
|
#COOSoA = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa))
|
|
}>
|
|
|
|
module {
|
|
|
|
//
|
|
// Main driver that tests sparse tensor storage.
|
|
//
|
|
func.func @main() {
|
|
%x = arith.constant dense <[
|
|
[ 1, 0, 2, 0, 0, 0, 0, 0 ],
|
|
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
[ 0, 0, 3, 4, 0, 5, 0, 0 ] ]> : tensor<4x8xi32>
|
|
|
|
%XO = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #AllDense>
|
|
%XT = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #AllDenseT>
|
|
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 32
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 4, 8 )
|
|
// CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 5, 0, 0,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %XO : tensor<4x8xi32, #AllDense>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 32
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 8, 4 )
|
|
// CHECK-NEXT: values : ( 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %XT : tensor<4x8xi32, #AllDenseT>
|
|
|
|
%a = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #CSR>
|
|
%b = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #DCSR>
|
|
%c = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #CSC>
|
|
%d = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #DCSC>
|
|
%e = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSR>
|
|
%f = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSRC>
|
|
%g = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSC>
|
|
%h = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSCC>
|
|
%i = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSR0>
|
|
%j = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #BSC0>
|
|
%AoS = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #COOAoS>
|
|
%SoA = sparse_tensor.convert %x : tensor<4x8xi32> to tensor<4x8xi32, #COOSoA>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 5
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 4, 8 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 2, 2, 2, 5,
|
|
// CHECK-NEXT: crd[1] : ( 0, 2, 2, 3, 5,
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %a : tensor<4x8xi32, #CSR>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 5
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 4, 8 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2,
|
|
// CHECK-NEXT: crd[0] : ( 0, 3,
|
|
// CHECK-NEXT: pos[1] : ( 0, 2, 5,
|
|
// CHECK-NEXT: crd[1] : ( 0, 2, 2, 3, 5,
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %b : tensor<4x8xi32, #DCSR>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 5
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 8, 4 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 1, 1, 3, 4, 4, 5, 5, 5,
|
|
// CHECK-NEXT: crd[1] : ( 0, 0, 3, 3, 3,
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %c : tensor<4x8xi32, #CSC>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 5
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 8, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 4,
|
|
// CHECK-NEXT: crd[0] : ( 0, 2, 3, 5,
|
|
// CHECK-NEXT: pos[1] : ( 0, 1, 3, 4, 5,
|
|
// CHECK-NEXT: crd[1] : ( 0, 0, 3, 3, 3,
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %d : tensor<4x8xi32, #DCSC>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 24
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 2, 2, 2, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2,
|
|
// CHECK-NEXT: crd[0] : ( 0, 1,
|
|
// CHECK-NEXT: pos[1] : ( 0, 1, 3,
|
|
// CHECK-NEXT: crd[1] : ( 0, 0, 1,
|
|
// CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %e : tensor<4x8xi32, #BSR>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 24
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 2, 2, 4, 2 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2,
|
|
// CHECK-NEXT: crd[0] : ( 0, 1,
|
|
// CHECK-NEXT: pos[1] : ( 0, 1, 3,
|
|
// CHECK-NEXT: crd[1] : ( 0, 0, 1,
|
|
// CHECK-NEXT: values : ( 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 5, 0, 0, 0, 0,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %f : tensor<4x8xi32, #BSRC>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 24
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 2, 2, 2, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2,
|
|
// CHECK-NEXT: crd[0] : ( 0, 1,
|
|
// CHECK-NEXT: pos[1] : ( 0, 2, 3,
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 1,
|
|
// CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %g : tensor<4x8xi32, #BSC>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 24
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 2, 2, 4, 2 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2,
|
|
// CHECK-NEXT: crd[0] : ( 0, 1,
|
|
// CHECK-NEXT: pos[1] : ( 0, 2, 3,
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 1,
|
|
// CHECK-NEXT: values : ( 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 5, 0, 0, 0, 0,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %h : tensor<4x8xi32, #BSCC>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 24
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 2, 2, 2, 4 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 1, 3,
|
|
// CHECK-NEXT: crd[1] : ( 0, 0, 1,
|
|
// CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %i : tensor<4x8xi32, #BSR0>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 24
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 2, 2, 2, 4 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 2, 3,
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 1,
|
|
// CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %j : tensor<4x8xi32, #BSC0>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 5
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 4, 8 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 5,
|
|
// CHECK-NEXT: crd[0] : ( 0, 0, 0, 2, 3, 2, 3, 3, 3, 5,
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %AoS : tensor<4x8xi32, #COOAoS>
|
|
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 5
|
|
// CHECK-NEXT: dim = ( 4, 8 )
|
|
// CHECK-NEXT: lvl = ( 4, 8 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 5,
|
|
// CHECK-NEXT: crd[0] : ( 0, 0, 3, 3, 3,
|
|
// CHECK-NEXT: crd[1] : ( 0, 2, 2, 3, 5,
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5,
|
|
// CHECK-NEXT: ----
|
|
sparse_tensor.print %SoA : tensor<4x8xi32, #COOSoA>
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %XO : tensor<4x8xi32, #AllDense>
|
|
bufferization.dealloc_tensor %XT : tensor<4x8xi32, #AllDenseT>
|
|
bufferization.dealloc_tensor %a : tensor<4x8xi32, #CSR>
|
|
bufferization.dealloc_tensor %b : tensor<4x8xi32, #DCSR>
|
|
bufferization.dealloc_tensor %c : tensor<4x8xi32, #CSC>
|
|
bufferization.dealloc_tensor %d : tensor<4x8xi32, #DCSC>
|
|
bufferization.dealloc_tensor %e : tensor<4x8xi32, #BSR>
|
|
bufferization.dealloc_tensor %f : tensor<4x8xi32, #BSRC>
|
|
bufferization.dealloc_tensor %g : tensor<4x8xi32, #BSC>
|
|
bufferization.dealloc_tensor %h : tensor<4x8xi32, #BSCC>
|
|
bufferization.dealloc_tensor %i : tensor<4x8xi32, #BSR0>
|
|
bufferization.dealloc_tensor %j : tensor<4x8xi32, #BSC0>
|
|
bufferization.dealloc_tensor %AoS : tensor<4x8xi32, #COOAoS>
|
|
bufferization.dealloc_tensor %SoA : tensor<4x8xi32, #COOSoA>
|
|
|
|
return
|
|
}
|
|
}
|