124 lines
4.6 KiB
MLIR
124 lines
4.6 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/wide.mtx"
|
|
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
|
|
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | env %{env} %{run_sve} | FileCheck %s %}
|
|
|
|
!Filename = !llvm.ptr
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : dense, d1 : compressed)
|
|
}>
|
|
|
|
#spmm = {
|
|
indexing_maps = [
|
|
affine_map<(i,j,k) -> (i,k)>, // A
|
|
affine_map<(i,j,k) -> (k,j)>, // B
|
|
affine_map<(i,j,k) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel", "reduction"],
|
|
doc = "X(i,j) += A(i,k) * B(k,j)"
|
|
}
|
|
|
|
//
|
|
// Integration test that lowers a kernel annotated as sparse to
|
|
// actual sparse code, initializes a matching sparse storage scheme
|
|
// from file, and runs the resulting code with the JIT compiler.
|
|
//
|
|
module {
|
|
//
|
|
// A kernel that multiplies a sparse matrix A with a dense matrix B
|
|
// into a dense matrix X.
|
|
//
|
|
func.func @kernel_spmm(%arga: tensor<?x?xf64, #SparseMatrix>,
|
|
%argb: tensor<?x?xf64>,
|
|
%argx: tensor<?x?xf64>) -> tensor<?x?xf64> {
|
|
%0 = linalg.generic #spmm
|
|
ins(%arga, %argb: tensor<?x?xf64, #SparseMatrix>, tensor<?x?xf64>)
|
|
outs(%argx: tensor<?x?xf64>) {
|
|
^bb(%a: f64, %b: f64, %x: f64):
|
|
%0 = arith.mulf %a, %b : f64
|
|
%1 = arith.addf %x, %0 : f64
|
|
linalg.yield %1 : f64
|
|
} -> tensor<?x?xf64>
|
|
return %0 : tensor<?x?xf64>
|
|
}
|
|
|
|
func.func private @getTensorFilename(index) -> (!Filename)
|
|
|
|
//
|
|
// Main driver that reads matrix from file and calls the sparse kernel.
|
|
//
|
|
func.func @main() {
|
|
%i0 = arith.constant 0.0 : f64
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
%c4 = arith.constant 4 : index
|
|
%c256 = arith.constant 256 : index
|
|
|
|
// Read the sparse matrix from file, construct sparse storage.
|
|
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
|
|
%a = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #SparseMatrix>
|
|
|
|
// Initialize dense tensors.
|
|
%b = tensor.generate %c256, %c4 {
|
|
^bb0(%i : index, %j : index):
|
|
%k0 = arith.muli %i, %c4 : index
|
|
%k1 = arith.addi %j, %k0 : index
|
|
%k2 = arith.index_cast %k1 : index to i32
|
|
%k = arith.sitofp %k2 : i32 to f64
|
|
tensor.yield %k : f64
|
|
} : tensor<?x?xf64>
|
|
|
|
%x = tensor.generate %c4, %c4 {
|
|
^bb0(%i : index, %j : index):
|
|
tensor.yield %i0 : f64
|
|
} : tensor<?x?xf64>
|
|
|
|
// Call kernel.
|
|
%0 = call @kernel_spmm(%a, %b, %x)
|
|
: (tensor<?x?xf64, #SparseMatrix>, tensor<?x?xf64>, tensor<?x?xf64>) -> tensor<?x?xf64>
|
|
|
|
// Print the result for verification.
|
|
//
|
|
// CHECK: ( ( 3548, 3550, 3552, 3554 ), ( 6052, 6053, 6054, 6055 ), ( -56, -63, -70, -77 ), ( -13704, -13709, -13714, -13719 ) )
|
|
//
|
|
%v = vector.transfer_read %0[%c0, %c0], %i0: tensor<?x?xf64>, vector<4x4xf64>
|
|
vector.print %v : vector<4x4xf64>
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %a : tensor<?x?xf64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %b : tensor<?x?xf64>
|
|
bufferization.dealloc_tensor %0 : tensor<?x?xf64>
|
|
|
|
return
|
|
}
|
|
}
|