The changes in this p.r. mostly center around the tests that use the flag sparse_compiler (also: sparse-compiler).
66 lines
2.6 KiB
MLIR
66 lines
2.6 KiB
MLIR
//
|
|
// NOTE: this test requires gpu-sm80
|
|
//
|
|
// RUN: mlir-opt %s \
|
|
// RUN: --sparsifier="enable-runtime-library=false parallelization-strategy=dense-outer-loop gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format" \
|
|
// RUN: | mlir-cpu-runner \
|
|
// RUN: --shared-libs=%mlir_cuda_runtime \
|
|
// RUN: --shared-libs=%mlir_c_runner_utils \
|
|
// RUN: --e main --entry-point-result=void \
|
|
// RUN: | FileCheck %s
|
|
|
|
#CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
|
|
|
|
module {
|
|
// Compute matrix vector y = Ax
|
|
func.func @matvec(%A: tensor<1024x64xf64, #CSR>, %x: tensor<64xf64>, %y_in: tensor<1024xf64>) -> tensor<1024xf64> {
|
|
%y_out = linalg.matvec
|
|
ins(%A, %x: tensor<1024x64xf64, #CSR>, tensor<64xf64>)
|
|
outs(%y_in: tensor<1024xf64>) -> tensor<1024xf64>
|
|
return %y_out : tensor<1024xf64>
|
|
}
|
|
|
|
memref.global "private" constant @__constant_64xf64 : memref<64xf64> = dense<1.000000e+00> {alignment = 64 : i64}
|
|
|
|
func.func @main() {
|
|
%f0 = arith.constant 0.0 : f64
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
|
|
// Stress test with a dense matrix DA.
|
|
%DA = tensor.generate {
|
|
^bb0(%i: index, %j: index):
|
|
%k = arith.addi %i, %j : index
|
|
%l = arith.index_cast %k : index to i64
|
|
%f = arith.uitofp %l : i64 to f64
|
|
tensor.yield %f : f64
|
|
} : tensor<1024x64xf64>
|
|
|
|
// Convert to a "sparse" 1024 x 64 matrix A.
|
|
%A = sparse_tensor.convert %DA : tensor<1024x64xf64> to tensor<1024x64xf64, #CSR>
|
|
|
|
// Initialize dense vector to 1024 zeros.
|
|
%y = tensor.generate {
|
|
^bb0(%i : index):
|
|
tensor.yield %f0 : f64
|
|
} : tensor<1024xf64>
|
|
|
|
// Call the kernel with an vector taken from global memory.
|
|
%xbuf = memref.get_global @__constant_64xf64 : memref<64xf64>
|
|
%x = bufferization.to_tensor %xbuf restrict : memref<64xf64>
|
|
%0 = call @matvec(%A, %x, %y) : (tensor<1024x64xf64, #CSR>, tensor<64xf64>, tensor<1024xf64>) -> tensor<1024xf64>
|
|
|
|
//
|
|
// Sanity check on results.
|
|
//
|
|
// CHECK: ( 2016, 2080, 2144, 2208, 2272, 2336, 2400, 2464, 2528, 2592, 2656, 2720, 2784, 2848, 2912, 2976, 3040, 3104, 3168, 3232, 3296, 3360, 3424, 3488, 3552, 3616, 3680, 3744, 3808, 3872, 3936, 4000, 4064, 4128, 4192, 4256, 4320, 4384, 4448, 4512, 4576, 4640, 4704, 4768, 4832, 4896, 4960, 5024, 5088, 5152, 5216, 5280, 5344, 5408, 5472, 5536, 5600, 5664, 5728, 5792, 5856, 5920, 5984, 6048 )
|
|
//
|
|
%pb0 = vector.transfer_read %0[%c0], %f0 : tensor<1024xf64>, vector<64xf64>
|
|
vector.print %pb0 : vector<64xf64>
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %A : tensor<1024x64xf64, #CSR>
|
|
return
|
|
}
|
|
}
|