* Move Module Bufferization to the bufferization dialect. The implementation is split into `OneShotModuleBufferize.cpp` and `FuncBufferizableOpInterfaceImpl.cpp`, so that the external model implementation can be easily moved to the func dialect in the future. * Split and clean up test cases. A few test cases are still remaining in Linalg and will be updated separately. * `linalg.inplaceable` is renamed to `bufferization.writable` to accurately reflect its current usage. * Attributes and their verifiers are moved from the Linalg dialect to the Bufferization dialect. * Expand documentation. * Add a new flag to One-Shot Bufferize to allow for function boundary bufferization. Differential Revision: https://reviews.llvm.org/D122229
466 lines
16 KiB
C++
466 lines
16 KiB
C++
//===- Bufferize.cpp - Bufferization utilities ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferizeTypeConverter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Value materializeToTensor(OpBuilder &builder, TensorType type,
|
|
ValueRange inputs, Location loc) {
|
|
assert(inputs.size() == 1);
|
|
assert(inputs[0].getType().isa<BaseMemRefType>());
|
|
return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]);
|
|
}
|
|
|
|
/// Registers conversions into BufferizeTypeConverter
|
|
BufferizeTypeConverter::BufferizeTypeConverter() {
|
|
// Keep all types unchanged.
|
|
addConversion([](Type type) { return type; });
|
|
// Convert RankedTensorType to MemRefType.
|
|
addConversion([](RankedTensorType type) -> Type {
|
|
return MemRefType::get(type.getShape(), type.getElementType());
|
|
});
|
|
// Convert UnrankedTensorType to UnrankedMemRefType.
|
|
addConversion([](UnrankedTensorType type) -> Type {
|
|
return UnrankedMemRefType::get(type.getElementType(), 0);
|
|
});
|
|
addArgumentMaterialization(materializeToTensor);
|
|
addSourceMaterialization(materializeToTensor);
|
|
addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type,
|
|
ValueRange inputs, Location loc) -> Value {
|
|
assert(inputs.size() == 1 && "expected exactly one input");
|
|
|
|
if (auto inputType = inputs[0].getType().dyn_cast<MemRefType>()) {
|
|
// MemRef to MemRef cast.
|
|
assert(inputType != type && "expected different types");
|
|
// Unranked to ranked and ranked to unranked casts must be explicit.
|
|
auto rankedDestType = type.dyn_cast<MemRefType>();
|
|
if (!rankedDestType)
|
|
return nullptr;
|
|
FailureOr<Value> replacement =
|
|
castOrReallocMemRefValue(builder, inputs[0], rankedDestType);
|
|
if (failed(replacement))
|
|
return nullptr;
|
|
return *replacement;
|
|
}
|
|
|
|
if (inputs[0].getType().isa<TensorType>()) {
|
|
// Tensor to MemRef cast.
|
|
return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]);
|
|
}
|
|
|
|
llvm_unreachable("only tensor/memref input types supported");
|
|
});
|
|
}
|
|
|
|
void mlir::bufferization::populateBufferizeMaterializationLegality(
|
|
ConversionTarget &target) {
|
|
target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>();
|
|
}
|
|
|
|
namespace {
|
|
// In a finalizing bufferize conversion, we know that all tensors have been
|
|
// converted to memrefs, thus, this op becomes an identity.
|
|
class BufferizeToTensorOp
|
|
: public OpConversionPattern<bufferization::ToTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOp(op, adaptor.memref());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// In a finalizing bufferize conversion, we know that all tensors have been
|
|
// converted to memrefs, thus, this op becomes an identity.
|
|
class BufferizeToMemrefOp
|
|
: public OpConversionPattern<bufferization::ToMemrefOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOp(op, adaptor.tensor());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns(
|
|
BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
|
|
patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter,
|
|
patterns.getContext());
|
|
}
|
|
|
|
namespace {
|
|
struct FinalizingBufferizePass
|
|
: public FinalizingBufferizeBase<FinalizingBufferizePass> {
|
|
using FinalizingBufferizeBase<
|
|
FinalizingBufferizePass>::FinalizingBufferizeBase;
|
|
|
|
void runOnOperation() override {
|
|
auto func = getOperation();
|
|
auto *context = &getContext();
|
|
|
|
BufferizeTypeConverter typeConverter;
|
|
RewritePatternSet patterns(context);
|
|
ConversionTarget target(*context);
|
|
|
|
populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns);
|
|
|
|
// If all result types are legal, and all block arguments are legal (ensured
|
|
// by func conversion above), then all types in the program are legal.
|
|
//
|
|
// We also check that the operand types are legal to avoid creating invalid
|
|
// IR. For example, this prevents
|
|
// populateEliminateBufferizeMaterializationsPatterns from updating the
|
|
// types of the operands to a return op without updating the enclosing
|
|
// function.
|
|
target.markUnknownOpDynamicallyLegal(
|
|
[&](Operation *op) { return typeConverter.isLegal(op); });
|
|
|
|
if (failed(applyFullConversion(func, target, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
struct OneShotBufferizePass
|
|
: public OneShotBufferizeBase<OneShotBufferizePass> {
|
|
OneShotBufferizePass() : OneShotBufferizeBase<OneShotBufferizePass>() {}
|
|
|
|
explicit OneShotBufferizePass(const OneShotBufferizationOptions &options)
|
|
: options(options) {}
|
|
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry
|
|
.insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
|
|
registerAllocationOpInterfaceExternalModels(registry);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
OneShotBufferizationOptions opt;
|
|
if (!options) {
|
|
// Make new bufferization options if none were provided when creating the
|
|
// pass.
|
|
opt.allowReturnAllocs = allowReturnAllocs;
|
|
opt.allowUnknownOps = allowUnknownOps;
|
|
opt.analysisFuzzerSeed = analysisFuzzerSeed;
|
|
opt.createDeallocs = createDeallocs;
|
|
opt.fullyDynamicLayoutMaps = fullyDynamicLayoutMaps;
|
|
opt.printConflicts = printConflicts;
|
|
opt.testAnalysisOnly = testAnalysisOnly;
|
|
|
|
BufferizationOptions::OpFilterEntry::FilterFn filterFn =
|
|
[&](Operation *op) {
|
|
// Disallow non-func dialect ops. I.e., no ops related to function
|
|
// calls. (Unless explicitly activated.)
|
|
bool isFuncBoundaryOp =
|
|
isa_and_nonnull<func::FuncDialect>(op->getDialect());
|
|
if (!this->bufferizeFunctionBoundaries && isFuncBoundaryOp)
|
|
return false;
|
|
// Filter may be specified via options.
|
|
if (this->dialectFilter.hasValue())
|
|
return llvm::find(this->dialectFilter,
|
|
op->getDialect()->getNamespace()) !=
|
|
this->dialectFilter.end();
|
|
// No filter specified: All other ops are allowed.
|
|
return true;
|
|
};
|
|
opt.allowOperationInFilter(filterFn);
|
|
} else {
|
|
opt = *options;
|
|
}
|
|
|
|
ModuleOp moduleOp = getOperation();
|
|
if (bufferizeFunctionBoundaries) {
|
|
if (failed(runOneShotModuleBufferize(moduleOp, opt))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
} else {
|
|
if (failed(runOneShotBufferize(moduleOp, opt))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (opt.testAnalysisOnly)
|
|
return;
|
|
|
|
OpPassManager cleanupPipeline("builtin.module");
|
|
cleanupPipeline.addPass(createCanonicalizerPass());
|
|
cleanupPipeline.addPass(createCSEPass());
|
|
cleanupPipeline.addPass(createLoopInvariantCodeMotionPass());
|
|
(void)runPipeline(cleanupPipeline, moduleOp);
|
|
}
|
|
|
|
private:
|
|
llvm::Optional<OneShotBufferizationOptions> options;
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() {
|
|
return std::make_unique<OneShotBufferizePass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass(
|
|
const OneShotBufferizationOptions &options) {
|
|
return std::make_unique<OneShotBufferizePass>(options);
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::bufferization::createFinalizingBufferizePass() {
|
|
return std::make_unique<FinalizingBufferizePass>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferizableOpInterface-based Bufferization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
|
|
|
|
/// Return true if the given op has a tensor result or a tensor operand.
|
|
static bool hasTensorSemantics(Operation *op) {
|
|
if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
|
|
bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor);
|
|
bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor);
|
|
return hasTensorArg || hasTensorResult;
|
|
}
|
|
|
|
bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
|
|
bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
|
|
return hasTensorResult || hasTensorOperand;
|
|
}
|
|
|
|
LogicalResult
|
|
bufferization::finalizeBuffers(Operation *op,
|
|
const BufferizationOptions &options) {
|
|
// Hoist buffers.
|
|
if (failed(hoistBufferAllocations(op, options)))
|
|
return failure();
|
|
|
|
// Deallocate buffers that escape block boundaries ("leaking buffers") with
|
|
// the buffer deallocation pass.
|
|
bool hasLeakingAlloc = false;
|
|
if (failed(createAllocDeallocOps(op, options, /*onlyLeakingAllocs=*/true,
|
|
&hasLeakingAlloc)))
|
|
return failure();
|
|
if (options.createDeallocs && hasLeakingAlloc &&
|
|
failed(deallocateBuffers(op)))
|
|
return failure();
|
|
|
|
// Deallocate all remaining buffers at the end of the block.
|
|
if (failed(createAllocDeallocOps(op, options)))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult bufferization::bufferizeOp(Operation *op,
|
|
const AnalysisState &analysisState) {
|
|
BufferizationState bufferizationState(analysisState);
|
|
if (failed(bufferizeOp(op, bufferizationState)))
|
|
return failure();
|
|
if (failed(finalizeBuffers(op, analysisState.getOptions())))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// A rewriter that keeps track of extra information during bufferization.
|
|
class BufferizationRewriter : public IRRewriter {
|
|
public:
|
|
BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps,
|
|
DenseSet<Operation *> &toMemrefOps,
|
|
SmallVector<Operation *> &worklist)
|
|
: IRRewriter(ctx), erasedOps(erasedOps), toMemrefOps(toMemrefOps),
|
|
worklist(worklist) {}
|
|
|
|
protected:
|
|
void notifyOperationRemoved(Operation *op) override {
|
|
IRRewriter::notifyOperationRemoved(op);
|
|
erasedOps.insert(op);
|
|
}
|
|
|
|
void notifyOperationInserted(Operation *op) override {
|
|
IRRewriter::notifyOperationInserted(op);
|
|
|
|
// Keep track of to_memref ops.
|
|
if (isa<ToMemrefOp>(op)) {
|
|
toMemrefOps.insert(op);
|
|
return;
|
|
}
|
|
|
|
// Skip to_tensor ops.
|
|
if (isa<ToTensorOp>(op))
|
|
return;
|
|
|
|
// A new bufferizable op was inserted. Add it to the worklist.
|
|
if (hasTensorSemantics(op))
|
|
worklist.push_back(op);
|
|
}
|
|
|
|
private:
|
|
/// A set of all erased ops.
|
|
DenseSet<Operation *> &erasedOps;
|
|
|
|
/// A set of all to_memref ops.
|
|
DenseSet<Operation *> &toMemrefOps;
|
|
|
|
/// The list of bufferizable ops.
|
|
SmallVector<Operation *> &worklist;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
bufferization::bufferizeOp(Operation *op,
|
|
BufferizationState &bufferizationState) {
|
|
const auto &options = bufferizationState.getOptions();
|
|
|
|
// Keep track of to_memref ops.
|
|
DenseSet<Operation *> toMemrefOps;
|
|
op->walk([&](ToMemrefOp toMemrefOp) { toMemrefOps.insert(toMemrefOp); });
|
|
|
|
// Gather all bufferizable ops in top-to-bottom order.
|
|
//
|
|
// We should ideally know the exact memref type of all operands when
|
|
// bufferizing an op. (This is the case when bufferizing top-to-bottom.)
|
|
// Otherwise, we have to use a memref type with a fully dynamic layout map,
|
|
// which has to canonicalize away. This is less efficient.
|
|
//
|
|
// If "fullyDynamicLayoutMaps = false", we would have to insert buffer copies
|
|
// to fold ("finalize") to_memref(to_tensor(x)) ops with non-cast-compatible
|
|
// layout maps when doing a traversal other than top-to-bottom. These would
|
|
// not easily fold away.
|
|
SmallVector<Operation *> worklist;
|
|
op->walk<WalkOrder::PreOrder>([&](Operation *op) {
|
|
if (hasTensorSemantics(op))
|
|
worklist.push_back(op);
|
|
});
|
|
|
|
// Keep track of all erased ops.
|
|
DenseSet<Operation *> erasedOps;
|
|
|
|
// Bufferize all ops.
|
|
BufferizationRewriter rewriter(op->getContext(), erasedOps, toMemrefOps,
|
|
worklist);
|
|
for (unsigned i = 0; i < worklist.size(); ++i) {
|
|
Operation *op = worklist[i];
|
|
// Skip ops that were erased.
|
|
if (erasedOps.contains(op))
|
|
continue;
|
|
// Skip ops that are not bufferizable.
|
|
auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op);
|
|
if (!bufferizableOp)
|
|
continue;
|
|
// Continue ops that are not allowed.
|
|
if (!options.isOpAllowed(op))
|
|
continue;
|
|
// Bufferize the op.
|
|
rewriter.setInsertionPoint(op);
|
|
(void)bufferizableOp.bufferize(rewriter, bufferizationState);
|
|
}
|
|
|
|
// Fold all to_memref(to_tensor(x)) pairs.
|
|
for (Operation *op : toMemrefOps) {
|
|
if (erasedOps.contains(op))
|
|
continue;
|
|
rewriter.setInsertionPoint(op);
|
|
(void)bufferization::foldToMemrefToTensorPair(rewriter,
|
|
cast<ToMemrefOp>(op));
|
|
}
|
|
|
|
/// Check the result of bufferization. Return an error if an op was not
|
|
/// bufferized, unless partial bufferization is allowed.
|
|
if (bufferizationState.getOptions().allowUnknownOps)
|
|
return success();
|
|
|
|
for (Operation *op : worklist) {
|
|
// Skip ops that are entirely gone.
|
|
if (erasedOps.contains(op))
|
|
continue;
|
|
// Ops that no longer have tensor semantics (because they were updated
|
|
// in-place) are allowed.
|
|
if (!hasTensorSemantics(op))
|
|
continue;
|
|
// Continue ops that are not allowed.
|
|
if (!options.isOpAllowed(op))
|
|
continue;
|
|
// Ops without any uses and no side effects will fold away.
|
|
if (op->getUses().empty() && MemoryEffectOpInterface::hasNoEffect(op))
|
|
continue;
|
|
return op->emitError("op was not bufferized");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// This a "no analysis, always copy" AnalysisState. In the absence of an
|
|
/// analysis, a buffer must be copied each time it is written to. Therefore, all
|
|
/// OpOperands that bufferize to a memory write must bufferize out-of-place.
|
|
class AlwaysCopyAnalysisState : public AnalysisState {
|
|
public:
|
|
AlwaysCopyAnalysisState(const BufferizationOptions &options)
|
|
: AnalysisState(options) {}
|
|
|
|
AlwaysCopyAnalysisState(const AlwaysCopyAnalysisState &) = delete;
|
|
|
|
virtual ~AlwaysCopyAnalysisState() = default;
|
|
|
|
/// Return `true` if the given OpResult has been decided to bufferize inplace.
|
|
bool isInPlace(OpOperand &opOperand) const override {
|
|
// OpOperands that bufferize to a memory write are out-of-place, i.e., an
|
|
// alloc and copy is inserted.
|
|
return !bufferizesToMemoryWrite(opOperand);
|
|
}
|
|
|
|
/// Return true if `v1` and `v2` bufferize to equivalent buffers.
|
|
bool areEquivalentBufferizedValues(Value v1, Value v2) const override {
|
|
// There is no analysis, so we do not know if the values are equivalent. The
|
|
// conservative answer is "false".
|
|
return false;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult bufferization::bufferizeOp(Operation *op,
|
|
const BufferizationOptions &options) {
|
|
AlwaysCopyAnalysisState state(options);
|
|
return bufferizeOp(op, state);
|
|
}
|
|
|
|
BufferizationOptions bufferization::getPartialBufferizationOptions() {
|
|
BufferizationOptions options;
|
|
options.allowUnknownOps = true;
|
|
options.createDeallocs = false;
|
|
options.fullyDynamicLayoutMaps = false;
|
|
return options;
|
|
}
|