Files
clang-p2996/lldb/source/Plugins/Process/minidump/MinidumpParser.cpp
Jacob Lalonde 492683527e [LLDB][Minidump] Support minidumps where there are multiple exception streams (#97470)
Currently, LLDB assumes all minidumps will have unique sections. This is
intuitive because almost all of the minidump sections are themselves
lists. Exceptions including Signals are unique in that they are all
individual sections with their own directory.

This means LLDB fails to load minidumps with multiple exceptions due to
them not being unique. This behavior is erroneous and this PR introduces
support for an arbitrary number of exception streams. Additionally, stop
info was calculated only for a single thread before, and now we properly
support mapping exceptions to threads.

~~This PR is starting in DRAFT because implementing testing is still
required.~~
2024-09-09 21:07:12 -07:00

684 lines
24 KiB
C++

//===-- MinidumpParser.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"
#include "Plugins/Process/Utility/LinuxProcMaps.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
// C includes
// C++ includes
#include <algorithm>
#include <map>
#include <optional>
#include <vector>
#include <utility>
using namespace lldb_private;
using namespace minidump;
llvm::Expected<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_sp) {
auto ExpectedFile = llvm::object::MinidumpFile::create(
llvm::MemoryBufferRef(toStringRef(data_sp->GetData()), "minidump"));
if (!ExpectedFile)
return ExpectedFile.takeError();
return MinidumpParser(data_sp, std::move(*ExpectedFile));
}
MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp,
std::unique_ptr<llvm::object::MinidumpFile> file)
: m_data_sp(std::move(data_sp)), m_file(std::move(file)) {}
llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
m_data_sp->GetByteSize());
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetStream(StreamType stream_type) {
return m_file->getRawStream(stream_type).value_or(llvm::ArrayRef<uint8_t>());
}
UUID MinidumpParser::GetModuleUUID(const minidump::Module *module) {
auto cv_record =
GetData().slice(module->CvRecord.RVA, module->CvRecord.DataSize);
// Read the CV record signature
const llvm::support::ulittle32_t *signature = nullptr;
Status error = consumeObject(cv_record, signature);
if (error.Fail())
return UUID();
const CvSignature cv_signature =
static_cast<CvSignature>(static_cast<uint32_t>(*signature));
if (cv_signature == CvSignature::Pdb70) {
const UUID::CvRecordPdb70 *pdb70_uuid = nullptr;
Status error = consumeObject(cv_record, pdb70_uuid);
if (error.Fail())
return UUID();
if (GetArchitecture().GetTriple().isOSBinFormatELF()) {
if (pdb70_uuid->Age != 0)
return UUID(pdb70_uuid, sizeof(*pdb70_uuid));
return UUID(&pdb70_uuid->Uuid,
sizeof(pdb70_uuid->Uuid));
}
return UUID(*pdb70_uuid);
} else if (cv_signature == CvSignature::ElfBuildId)
return UUID(cv_record);
return UUID();
}
llvm::ArrayRef<minidump::Thread> MinidumpParser::GetThreads() {
auto ExpectedThreads = GetMinidumpFile().getThreadList();
if (ExpectedThreads)
return *ExpectedThreads;
LLDB_LOG_ERROR(GetLog(LLDBLog::Thread), ExpectedThreads.takeError(),
"Failed to read thread list: {0}");
return {};
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const LocationDescriptor &location) {
if (location.RVA + location.DataSize > GetData().size())
return {};
return GetData().slice(location.RVA, location.DataSize);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const minidump::Thread &td) {
return GetThreadContext(td.Context);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const minidump::Thread &td) {
// On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
// the minidump was captured with a 64-bit debugger, then the CONTEXT we just
// grabbed from the mini_dump_thread is the one for the 64-bit "native"
// process rather than the 32-bit "guest" process we care about. In this
// case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
// Block) of the 64-bit process.
auto teb_mem = GetMemory(td.EnvironmentBlock, sizeof(TEB64));
if (teb_mem.empty())
return {};
const TEB64 *wow64teb;
Status error = consumeObject(teb_mem, wow64teb);
if (error.Fail())
return {};
// Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
// that includes the 32-bit CONTEXT (after a ULONG). See:
// https://msdn.microsoft.com/en-us/library/ms681670.aspx
auto context =
GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
if (context.size() < sizeof(MinidumpContext_x86_32))
return {};
return context;
// NOTE: We don't currently use the TEB for anything else. If we
// need it in the future, the 32-bit TEB is located according to the address
// stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}
ArchSpec MinidumpParser::GetArchitecture() {
if (m_arch.IsValid())
return m_arch;
// Set the architecture in m_arch
llvm::Expected<const SystemInfo &> system_info = m_file->getSystemInfo();
if (!system_info) {
LLDB_LOG_ERROR(GetLog(LLDBLog::Process), system_info.takeError(),
"Failed to read SystemInfo stream: {0}");
return m_arch;
}
// TODO what to do about big endiand flavors of arm ?
// TODO set the arm subarch stuff if the minidump has info about it
llvm::Triple triple;
triple.setVendor(llvm::Triple::VendorType::UnknownVendor);
switch (system_info->ProcessorArch) {
case ProcessorArchitecture::X86:
triple.setArch(llvm::Triple::ArchType::x86);
break;
case ProcessorArchitecture::AMD64:
triple.setArch(llvm::Triple::ArchType::x86_64);
break;
case ProcessorArchitecture::ARM:
triple.setArch(llvm::Triple::ArchType::arm);
break;
case ProcessorArchitecture::ARM64:
case ProcessorArchitecture::BP_ARM64:
triple.setArch(llvm::Triple::ArchType::aarch64);
break;
default:
triple.setArch(llvm::Triple::ArchType::UnknownArch);
break;
}
// TODO add all of the OSes that Minidump/breakpad distinguishes?
switch (system_info->PlatformId) {
case OSPlatform::Win32S:
case OSPlatform::Win32Windows:
case OSPlatform::Win32NT:
case OSPlatform::Win32CE:
triple.setOS(llvm::Triple::OSType::Win32);
triple.setVendor(llvm::Triple::VendorType::PC);
break;
case OSPlatform::Linux:
triple.setOS(llvm::Triple::OSType::Linux);
break;
case OSPlatform::MacOSX:
triple.setOS(llvm::Triple::OSType::MacOSX);
triple.setVendor(llvm::Triple::Apple);
break;
case OSPlatform::IOS:
triple.setOS(llvm::Triple::OSType::IOS);
triple.setVendor(llvm::Triple::Apple);
break;
case OSPlatform::Android:
triple.setOS(llvm::Triple::OSType::Linux);
triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
break;
default: {
triple.setOS(llvm::Triple::OSType::UnknownOS);
auto ExpectedCSD = m_file->getString(system_info->CSDVersionRVA);
if (!ExpectedCSD) {
LLDB_LOG_ERROR(GetLog(LLDBLog::Process), ExpectedCSD.takeError(),
"Failed to CSD Version string: {0}");
} else {
if (ExpectedCSD->find("Linux") != std::string::npos)
triple.setOS(llvm::Triple::OSType::Linux);
}
break;
}
}
m_arch.SetTriple(triple);
return m_arch;
}
const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::MiscInfo);
if (data.size() == 0)
return nullptr;
return MinidumpMiscInfo::Parse(data);
}
std::optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::LinuxProcStatus);
if (data.size() == 0)
return std::nullopt;
return LinuxProcStatus::Parse(data);
}
std::optional<lldb::pid_t> MinidumpParser::GetPid() {
const MinidumpMiscInfo *misc_info = GetMiscInfo();
if (misc_info != nullptr) {
return misc_info->GetPid();
}
std::optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
if (proc_status) {
return proc_status->GetPid();
}
return std::nullopt;
}
llvm::ArrayRef<minidump::Module> MinidumpParser::GetModuleList() {
auto ExpectedModules = GetMinidumpFile().getModuleList();
if (ExpectedModules)
return *ExpectedModules;
LLDB_LOG_ERROR(GetLog(LLDBLog::Modules), ExpectedModules.takeError(),
"Failed to read module list: {0}");
return {};
}
static bool
CreateRegionsCacheFromLinuxMaps(MinidumpParser &parser,
std::vector<MemoryRegionInfo> &regions) {
auto data = parser.GetStream(StreamType::LinuxMaps);
if (data.empty())
return false;
Log *log = GetLog(LLDBLog::Expressions);
ParseLinuxMapRegions(
llvm::toStringRef(data),
[&regions, &log](llvm::Expected<MemoryRegionInfo> region) -> bool {
if (region)
regions.push_back(*region);
else
LLDB_LOG_ERROR(log, region.takeError(),
"Reading memory region from minidump failed: {0}");
return true;
});
return !regions.empty();
}
/// Check for the memory regions starting at \a load_addr for a contiguous
/// section that has execute permissions that matches the module path.
///
/// When we load a breakpad generated minidump file, we might have the
/// /proc/<pid>/maps text for a process that details the memory map of the
/// process that the minidump is describing. This checks the sorted memory
/// regions for a section that has execute permissions. A sample maps files
/// might look like:
///
/// 00400000-00401000 r--p 00000000 fd:01 2838574 /tmp/a.out
/// 00401000-00402000 r-xp 00001000 fd:01 2838574 /tmp/a.out
/// 00402000-00403000 r--p 00002000 fd:01 2838574 /tmp/a.out
/// 00403000-00404000 r--p 00002000 fd:01 2838574 /tmp/a.out
/// 00404000-00405000 rw-p 00003000 fd:01 2838574 /tmp/a.out
/// ...
///
/// This function should return true when given 0x00400000 and "/tmp/a.out"
/// is passed in as the path since it has a consecutive memory region for
/// "/tmp/a.out" that has execute permissions at 0x00401000. This will help us
/// differentiate if a file has been memory mapped into a process for reading
/// and breakpad ends up saving a minidump file that has two module entries for
/// a given file: one that is read only for the entire file, and then one that
/// is the real executable that is loaded into memory for execution. For memory
/// mapped files they will typically show up and r--p permissions and a range
/// matcning the entire range of the file on disk:
///
/// 00800000-00805000 r--p 00000000 fd:01 2838574 /tmp/a.out
/// 00805000-00806000 r-xp 00001000 fd:01 1234567 /usr/lib/libc.so
///
/// This function should return false when asked about 0x00800000 with
/// "/tmp/a.out" as the path.
///
/// \param[in] path
/// The path to the module to check for in the memory regions. Only sequential
/// memory regions whose paths match this path will be considered when looking
/// for execute permissions.
///
/// \param[in] regions
/// A sorted list of memory regions obtained from a call to
/// CreateRegionsCacheFromLinuxMaps.
///
/// \param[in] base_of_image
/// The load address of this module from BaseOfImage in the modules list.
///
/// \return
/// True if a contiguous region of memory belonging to the module with a
/// matching path exists that has executable permissions. Returns false if
/// \a regions is empty or if there are no regions with execute permissions
/// that match \a path.
static bool CheckForLinuxExecutable(ConstString path,
const MemoryRegionInfos &regions,
lldb::addr_t base_of_image) {
if (regions.empty())
return false;
lldb::addr_t addr = base_of_image;
MemoryRegionInfo region = MinidumpParser::GetMemoryRegionInfo(regions, addr);
while (region.GetName() == path) {
if (region.GetExecutable() == MemoryRegionInfo::eYes)
return true;
addr += region.GetRange().GetByteSize();
region = MinidumpParser::GetMemoryRegionInfo(regions, addr);
}
return false;
}
std::vector<const minidump::Module *> MinidumpParser::GetFilteredModuleList() {
Log *log = GetLog(LLDBLog::Modules);
auto ExpectedModules = GetMinidumpFile().getModuleList();
if (!ExpectedModules) {
LLDB_LOG_ERROR(log, ExpectedModules.takeError(),
"Failed to read module list: {0}");
return {};
}
// Create memory regions from the linux maps only. We do this to avoid issues
// with breakpad generated minidumps where if someone has mmap'ed a shared
// library into memory to access its data in the object file, we can get a
// minidump with two mappings for a binary: one whose base image points to a
// memory region that is read + execute and one that is read only.
MemoryRegionInfos linux_regions;
if (CreateRegionsCacheFromLinuxMaps(*this, linux_regions))
llvm::sort(linux_regions);
// map module_name -> filtered_modules index
typedef llvm::StringMap<size_t> MapType;
MapType module_name_to_filtered_index;
std::vector<const minidump::Module *> filtered_modules;
for (const auto &module : *ExpectedModules) {
auto ExpectedName = m_file->getString(module.ModuleNameRVA);
if (!ExpectedName) {
LLDB_LOG_ERROR(log, ExpectedName.takeError(),
"Failed to get module name: {0}");
continue;
}
MapType::iterator iter;
bool inserted;
// See if we have inserted this module aready into filtered_modules. If we
// haven't insert an entry into module_name_to_filtered_index with the
// index where we will insert it if it isn't in the vector already.
std::tie(iter, inserted) = module_name_to_filtered_index.try_emplace(
*ExpectedName, filtered_modules.size());
if (inserted) {
// This module has not been seen yet, insert it into filtered_modules at
// the index that was inserted into module_name_to_filtered_index using
// "filtered_modules.size()" above.
filtered_modules.push_back(&module);
} else {
// We have a duplicate module entry. Check the linux regions to see if
// either module is not really a mapped executable. If one but not the
// other is a real mapped executable, prefer the executable one. This
// can happen when a process mmap's in the file for an executable in
// order to read bytes from the executable file. A memory region mapping
// will exist for the mmap'ed version and for the loaded executable, but
// only one will have a consecutive region that is executable in the
// memory regions.
auto dup_module = filtered_modules[iter->second];
ConstString name(*ExpectedName);
bool is_executable =
CheckForLinuxExecutable(name, linux_regions, module.BaseOfImage);
bool dup_is_executable =
CheckForLinuxExecutable(name, linux_regions, dup_module->BaseOfImage);
if (is_executable != dup_is_executable) {
if (is_executable)
filtered_modules[iter->second] = &module;
continue;
}
// This module has been seen. Modules are sometimes mentioned multiple
// times when they are mapped discontiguously, so find the module with
// the lowest "base_of_image" and use that as the filtered module.
if (module.BaseOfImage < dup_module->BaseOfImage)
filtered_modules[iter->second] = &module;
}
}
return filtered_modules;
}
llvm::iterator_range<ExceptionStreamsIterator>
MinidumpParser::GetExceptionStreams() {
return GetMinidumpFile().getExceptionStreams();
}
std::optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
Log *log = GetLog(LLDBLog::Modules);
auto ExpectedMemory = GetMinidumpFile().getMemoryList();
if (!ExpectedMemory) {
LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
"Failed to read memory list: {0}");
} else {
for (const auto &memory_desc : *ExpectedMemory) {
const LocationDescriptor &loc_desc = memory_desc.Memory;
const lldb::addr_t range_start = memory_desc.StartOfMemoryRange;
const size_t range_size = loc_desc.DataSize;
if (loc_desc.RVA + loc_desc.DataSize > GetData().size())
return std::nullopt;
if (range_start <= addr && addr < range_start + range_size) {
auto ExpectedSlice = GetMinidumpFile().getRawData(loc_desc);
if (!ExpectedSlice) {
LLDB_LOG_ERROR(log, ExpectedSlice.takeError(),
"Failed to get memory slice: {0}");
return std::nullopt;
}
return minidump::Range(range_start, *ExpectedSlice);
}
}
}
if (!GetStream(StreamType::Memory64List).empty()) {
llvm::Error err = llvm::Error::success();
for (const auto &memory_desc : GetMinidumpFile().getMemory64List(err)) {
if (memory_desc.first.StartOfMemoryRange <= addr
&& addr < memory_desc.first.StartOfMemoryRange + memory_desc.first.DataSize) {
return minidump::Range(memory_desc.first.StartOfMemoryRange, memory_desc.second);
}
}
if (err)
LLDB_LOG_ERROR(log, std::move(err), "Failed to read memory64 list: {0}");
}
return std::nullopt;
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
size_t size) {
// I don't have a sense of how frequently this is called or how many memory
// ranges a Minidump typically has, so I'm not sure if searching for the
// appropriate range linearly each time is stupid. Perhaps we should build
// an index for faster lookups.
std::optional<minidump::Range> range = FindMemoryRange(addr);
if (!range)
return {};
// There's at least some overlap between the beginning of the desired range
// (addr) and the current range. Figure out where the overlap begins and how
// much overlap there is.
const size_t offset = addr - range->start;
if (addr < range->start || offset >= range->range_ref.size())
return {};
const size_t overlap = std::min(size, range->range_ref.size() - offset);
return range->range_ref.slice(offset, overlap);
}
llvm::iterator_range<FallibleMemory64Iterator> MinidumpParser::GetMemory64Iterator(llvm::Error &err) {
llvm::ErrorAsOutParameter ErrAsOutParam(&err);
return m_file->getMemory64List(err);
}
static bool
CreateRegionsCacheFromMemoryInfoList(MinidumpParser &parser,
std::vector<MemoryRegionInfo> &regions) {
Log *log = GetLog(LLDBLog::Modules);
auto ExpectedInfo = parser.GetMinidumpFile().getMemoryInfoList();
if (!ExpectedInfo) {
LLDB_LOG_ERROR(log, ExpectedInfo.takeError(),
"Failed to read memory info list: {0}");
return false;
}
constexpr auto yes = MemoryRegionInfo::eYes;
constexpr auto no = MemoryRegionInfo::eNo;
for (const MemoryInfo &entry : *ExpectedInfo) {
MemoryRegionInfo region;
region.GetRange().SetRangeBase(entry.BaseAddress);
region.GetRange().SetByteSize(entry.RegionSize);
MemoryProtection prot = entry.Protect;
region.SetReadable(bool(prot & MemoryProtection::NoAccess) ? no : yes);
region.SetWritable(
bool(prot & (MemoryProtection::ReadWrite | MemoryProtection::WriteCopy |
MemoryProtection::ExecuteReadWrite |
MemoryProtection::ExeciteWriteCopy))
? yes
: no);
region.SetExecutable(
bool(prot & (MemoryProtection::Execute | MemoryProtection::ExecuteRead |
MemoryProtection::ExecuteReadWrite |
MemoryProtection::ExeciteWriteCopy))
? yes
: no);
region.SetMapped(entry.State != MemoryState::Free ? yes : no);
regions.push_back(region);
}
return !regions.empty();
}
static bool
CreateRegionsCacheFromMemoryList(MinidumpParser &parser,
std::vector<MemoryRegionInfo> &regions) {
Log *log = GetLog(LLDBLog::Modules);
// Cache the expected memory32 into an optional
// because it is possible to just have a memory64 list
auto ExpectedMemory = parser.GetMinidumpFile().getMemoryList();
if (!ExpectedMemory) {
LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
"Failed to read memory list: {0}");
} else {
for (const MemoryDescriptor &memory_desc : *ExpectedMemory) {
if (memory_desc.Memory.DataSize == 0)
continue;
MemoryRegionInfo region;
region.GetRange().SetRangeBase(memory_desc.StartOfMemoryRange);
region.GetRange().SetByteSize(memory_desc.Memory.DataSize);
region.SetReadable(MemoryRegionInfo::eYes);
region.SetMapped(MemoryRegionInfo::eYes);
regions.push_back(region);
}
}
if (!parser.GetStream(StreamType::Memory64List).empty()) {
llvm::Error err = llvm::Error::success();
for (const auto &memory_desc : parser.GetMemory64Iterator(err)) {
if (memory_desc.first.DataSize == 0)
continue;
MemoryRegionInfo region;
region.GetRange().SetRangeBase(memory_desc.first.StartOfMemoryRange);
region.GetRange().SetByteSize(memory_desc.first.DataSize);
region.SetReadable(MemoryRegionInfo::eYes);
region.SetMapped(MemoryRegionInfo::eYes);
regions.push_back(region);
}
if (err) {
LLDB_LOG_ERROR(log, std::move(err), "Failed to read memory64 list: {0}");
return false;
}
}
regions.shrink_to_fit();
return !regions.empty();
}
std::pair<MemoryRegionInfos, bool> MinidumpParser::BuildMemoryRegions() {
// We create the region cache using the best source. We start with
// the linux maps since they are the most complete and have names for the
// regions. Next we try the MemoryInfoList since it has
// read/write/execute/map data, and then fall back to the MemoryList and
// Memory64List to just get a list of the memory that is mapped in this
// core file
MemoryRegionInfos result;
const auto &return_sorted = [&](bool is_complete) {
llvm::sort(result);
return std::make_pair(std::move(result), is_complete);
};
if (CreateRegionsCacheFromLinuxMaps(*this, result))
return return_sorted(true);
if (CreateRegionsCacheFromMemoryInfoList(*this, result))
return return_sorted(true);
CreateRegionsCacheFromMemoryList(*this, result);
return return_sorted(false);
}
#define ENUM_TO_CSTR(ST) \
case StreamType::ST: \
return #ST
llvm::StringRef
MinidumpParser::GetStreamTypeAsString(StreamType stream_type) {
switch (stream_type) {
ENUM_TO_CSTR(Unused);
ENUM_TO_CSTR(ThreadList);
ENUM_TO_CSTR(ModuleList);
ENUM_TO_CSTR(MemoryList);
ENUM_TO_CSTR(Exception);
ENUM_TO_CSTR(SystemInfo);
ENUM_TO_CSTR(ThreadExList);
ENUM_TO_CSTR(Memory64List);
ENUM_TO_CSTR(CommentA);
ENUM_TO_CSTR(CommentW);
ENUM_TO_CSTR(HandleData);
ENUM_TO_CSTR(FunctionTable);
ENUM_TO_CSTR(UnloadedModuleList);
ENUM_TO_CSTR(MiscInfo);
ENUM_TO_CSTR(MemoryInfoList);
ENUM_TO_CSTR(ThreadInfoList);
ENUM_TO_CSTR(HandleOperationList);
ENUM_TO_CSTR(Token);
ENUM_TO_CSTR(JavascriptData);
ENUM_TO_CSTR(SystemMemoryInfo);
ENUM_TO_CSTR(ProcessVMCounters);
ENUM_TO_CSTR(LastReserved);
ENUM_TO_CSTR(BreakpadInfo);
ENUM_TO_CSTR(AssertionInfo);
ENUM_TO_CSTR(LinuxCPUInfo);
ENUM_TO_CSTR(LinuxProcStatus);
ENUM_TO_CSTR(LinuxLSBRelease);
ENUM_TO_CSTR(LinuxCMDLine);
ENUM_TO_CSTR(LinuxEnviron);
ENUM_TO_CSTR(LinuxAuxv);
ENUM_TO_CSTR(LinuxMaps);
ENUM_TO_CSTR(LinuxDSODebug);
ENUM_TO_CSTR(LinuxProcStat);
ENUM_TO_CSTR(LinuxProcUptime);
ENUM_TO_CSTR(LinuxProcFD);
ENUM_TO_CSTR(FacebookAppCustomData);
ENUM_TO_CSTR(FacebookBuildID);
ENUM_TO_CSTR(FacebookAppVersionName);
ENUM_TO_CSTR(FacebookJavaStack);
ENUM_TO_CSTR(FacebookDalvikInfo);
ENUM_TO_CSTR(FacebookUnwindSymbols);
ENUM_TO_CSTR(FacebookDumpErrorLog);
ENUM_TO_CSTR(FacebookAppStateLog);
ENUM_TO_CSTR(FacebookAbortReason);
ENUM_TO_CSTR(FacebookThreadName);
ENUM_TO_CSTR(FacebookLogcat);
}
return "unknown stream type";
}
MemoryRegionInfo
MinidumpParser::GetMemoryRegionInfo(const MemoryRegionInfos &regions,
lldb::addr_t load_addr) {
MemoryRegionInfo region;
auto pos = llvm::upper_bound(regions, load_addr);
if (pos != regions.begin() &&
std::prev(pos)->GetRange().Contains(load_addr)) {
return *std::prev(pos);
}
if (pos == regions.begin())
region.GetRange().SetRangeBase(0);
else
region.GetRange().SetRangeBase(std::prev(pos)->GetRange().GetRangeEnd());
if (pos == regions.end())
region.GetRange().SetRangeEnd(UINT64_MAX);
else
region.GetRange().SetRangeEnd(pos->GetRange().GetRangeBase());
region.SetReadable(MemoryRegionInfo::eNo);
region.SetWritable(MemoryRegionInfo::eNo);
region.SetExecutable(MemoryRegionInfo::eNo);
region.SetMapped(MemoryRegionInfo::eNo);
return region;
}