380 lines
15 KiB
C++
380 lines
15 KiB
C++
//===- GenericLoopConversion.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Support/OpenMP-utils.h"
|
|
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <type_traits>
|
|
|
|
namespace flangomp {
|
|
#define GEN_PASS_DEF_GENERICLOOPCONVERSIONPASS
|
|
#include "flang/Optimizer/OpenMP/Passes.h.inc"
|
|
} // namespace flangomp
|
|
|
|
namespace {
|
|
|
|
/// A conversion pattern to handle various combined forms of `omp.loop`. For how
|
|
/// combined/composite directive are handled see:
|
|
/// https://discourse.llvm.org/t/rfc-representing-combined-composite-constructs-in-the-openmp-dialect/76986.
|
|
class GenericLoopConversionPattern
|
|
: public mlir::OpConversionPattern<mlir::omp::LoopOp> {
|
|
public:
|
|
enum class GenericLoopCombinedInfo { Standalone, TeamsLoop, ParallelLoop };
|
|
|
|
using mlir::OpConversionPattern<mlir::omp::LoopOp>::OpConversionPattern;
|
|
|
|
explicit GenericLoopConversionPattern(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<mlir::omp::LoopOp>{ctx} {
|
|
// Enable rewrite recursion to make sure nested `loop` directives are
|
|
// handled.
|
|
this->setHasBoundedRewriteRecursion(true);
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(mlir::omp::LoopOp loopOp, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
assert(mlir::succeeded(checkLoopConversionSupportStatus(loopOp)));
|
|
|
|
GenericLoopCombinedInfo combinedInfo = findGenericLoopCombineInfo(loopOp);
|
|
|
|
switch (combinedInfo) {
|
|
case GenericLoopCombinedInfo::Standalone:
|
|
rewriteStandaloneLoop(loopOp, rewriter);
|
|
break;
|
|
case GenericLoopCombinedInfo::ParallelLoop:
|
|
rewriteToWsloop(loopOp, rewriter);
|
|
break;
|
|
case GenericLoopCombinedInfo::TeamsLoop:
|
|
if (teamsLoopCanBeParallelFor(loopOp))
|
|
rewriteToDistributeParallelDo(loopOp, rewriter);
|
|
else
|
|
rewriteToDistribute(loopOp, rewriter);
|
|
break;
|
|
}
|
|
|
|
rewriter.eraseOp(loopOp);
|
|
return mlir::success();
|
|
}
|
|
|
|
static mlir::LogicalResult
|
|
checkLoopConversionSupportStatus(mlir::omp::LoopOp loopOp) {
|
|
auto todo = [&loopOp](mlir::StringRef clauseName) {
|
|
return loopOp.emitError()
|
|
<< "not yet implemented: Unhandled clause " << clauseName << " in "
|
|
<< loopOp->getName() << " operation";
|
|
};
|
|
|
|
if (loopOp.getOrder())
|
|
return todo("order");
|
|
|
|
return mlir::success();
|
|
}
|
|
|
|
private:
|
|
static GenericLoopCombinedInfo
|
|
findGenericLoopCombineInfo(mlir::omp::LoopOp loopOp) {
|
|
mlir::Operation *parentOp = loopOp->getParentOp();
|
|
GenericLoopCombinedInfo result = GenericLoopCombinedInfo::Standalone;
|
|
|
|
if (auto teamsOp = mlir::dyn_cast_if_present<mlir::omp::TeamsOp>(parentOp))
|
|
result = GenericLoopCombinedInfo::TeamsLoop;
|
|
|
|
if (auto parallelOp =
|
|
mlir::dyn_cast_if_present<mlir::omp::ParallelOp>(parentOp))
|
|
result = GenericLoopCombinedInfo::ParallelLoop;
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Checks whether a `teams loop` construct can be rewriten to `teams
|
|
/// distribute parallel do` or it has to be converted to `teams distribute`.
|
|
///
|
|
/// This checks similar constrains to what is checked by `TeamsLoopChecker` in
|
|
/// SemaOpenMP.cpp in clang.
|
|
static bool teamsLoopCanBeParallelFor(mlir::omp::LoopOp loopOp) {
|
|
bool canBeParallelFor =
|
|
!loopOp
|
|
.walk<mlir::WalkOrder::PreOrder>([&](mlir::Operation *nestedOp) {
|
|
if (nestedOp == loopOp)
|
|
return mlir::WalkResult::advance();
|
|
|
|
if (auto nestedLoopOp =
|
|
mlir::dyn_cast<mlir::omp::LoopOp>(nestedOp)) {
|
|
GenericLoopCombinedInfo combinedInfo =
|
|
findGenericLoopCombineInfo(nestedLoopOp);
|
|
|
|
// Worksharing loops cannot be nested inside each other.
|
|
// Therefore, if the current `loop` directive nests another
|
|
// `loop` whose `bind` modifier is `parallel`, this `loop`
|
|
// directive cannot be mapped to `distribute parallel for`
|
|
// but rather only to `distribute`.
|
|
if (combinedInfo == GenericLoopCombinedInfo::Standalone &&
|
|
nestedLoopOp.getBindKind() &&
|
|
*nestedLoopOp.getBindKind() ==
|
|
mlir::omp::ClauseBindKind::Parallel)
|
|
return mlir::WalkResult::interrupt();
|
|
|
|
if (combinedInfo == GenericLoopCombinedInfo::ParallelLoop)
|
|
return mlir::WalkResult::interrupt();
|
|
|
|
} else if (auto callOp =
|
|
mlir::dyn_cast<mlir::CallOpInterface>(nestedOp)) {
|
|
// Calls to non-OpenMP API runtime functions inhibits
|
|
// transformation to `teams distribute parallel do` since the
|
|
// called functions might have nested parallelism themselves.
|
|
bool isOpenMPAPI = false;
|
|
mlir::CallInterfaceCallable callable =
|
|
callOp.getCallableForCallee();
|
|
|
|
if (auto callableSymRef =
|
|
mlir::dyn_cast<mlir::SymbolRefAttr>(callable))
|
|
isOpenMPAPI =
|
|
callableSymRef.getRootReference().strref().starts_with(
|
|
"omp_");
|
|
|
|
if (!isOpenMPAPI)
|
|
return mlir::WalkResult::interrupt();
|
|
}
|
|
|
|
return mlir::WalkResult::advance();
|
|
})
|
|
.wasInterrupted();
|
|
|
|
return canBeParallelFor;
|
|
}
|
|
|
|
void rewriteStandaloneLoop(mlir::omp::LoopOp loopOp,
|
|
mlir::ConversionPatternRewriter &rewriter) const {
|
|
using namespace mlir::omp;
|
|
std::optional<ClauseBindKind> bindKind = loopOp.getBindKind();
|
|
|
|
if (!bindKind.has_value())
|
|
return rewriteToSimdLoop(loopOp, rewriter);
|
|
|
|
switch (*loopOp.getBindKind()) {
|
|
case ClauseBindKind::Parallel:
|
|
return rewriteToWsloop(loopOp, rewriter);
|
|
case ClauseBindKind::Teams:
|
|
return rewriteToDistribute(loopOp, rewriter);
|
|
case ClauseBindKind::Thread:
|
|
return rewriteToSimdLoop(loopOp, rewriter);
|
|
}
|
|
}
|
|
|
|
/// Rewrites standalone `loop` (without `bind` clause or with
|
|
/// `bind(parallel)`) directives to equivalent `simd` constructs.
|
|
///
|
|
/// The reasoning behind this decision is that according to the spec (version
|
|
/// 5.2, section 11.7.1):
|
|
///
|
|
/// "If the bind clause is not specified on a construct for which it may be
|
|
/// specified and the construct is closely nested inside a teams or parallel
|
|
/// construct, the effect is as if binding is teams or parallel. If none of
|
|
/// those conditions hold, the binding region is not defined."
|
|
///
|
|
/// which means that standalone `loop` directives have undefined binding
|
|
/// region. Moreover, the spec says (in the next paragraph):
|
|
///
|
|
/// "The specified binding region determines the binding thread set.
|
|
/// Specifically, if the binding region is a teams region, then the binding
|
|
/// thread set is the set of initial threads that are executing that region
|
|
/// while if the binding region is a parallel region, then the binding thread
|
|
/// set is the team of threads that are executing that region. If the binding
|
|
/// region is not defined, then the binding thread set is the encountering
|
|
/// thread."
|
|
///
|
|
/// which means that the binding thread set for a standalone `loop` directive
|
|
/// is only the encountering thread.
|
|
///
|
|
/// Since the encountering thread is the binding thread (set) for a
|
|
/// standalone `loop` directive, the best we can do in such case is to "simd"
|
|
/// the directive.
|
|
void rewriteToSimdLoop(mlir::omp::LoopOp loopOp,
|
|
mlir::ConversionPatternRewriter &rewriter) const {
|
|
loopOp.emitWarning(
|
|
"Detected standalone OpenMP `loop` directive with thread binding, "
|
|
"the associated loop will be rewritten to `simd`.");
|
|
rewriteToSingleWrapperOp<mlir::omp::SimdOp, mlir::omp::SimdOperands>(
|
|
loopOp, rewriter);
|
|
}
|
|
|
|
void rewriteToDistribute(mlir::omp::LoopOp loopOp,
|
|
mlir::ConversionPatternRewriter &rewriter) const {
|
|
assert(loopOp.getReductionVars().empty());
|
|
rewriteToSingleWrapperOp<mlir::omp::DistributeOp,
|
|
mlir::omp::DistributeOperands>(loopOp, rewriter);
|
|
}
|
|
|
|
void rewriteToWsloop(mlir::omp::LoopOp loopOp,
|
|
mlir::ConversionPatternRewriter &rewriter) const {
|
|
rewriteToSingleWrapperOp<mlir::omp::WsloopOp, mlir::omp::WsloopOperands>(
|
|
loopOp, rewriter);
|
|
}
|
|
|
|
// TODO Suggestion by Sergio: tag auto-generated operations for constructs
|
|
// that weren't part of the original program, that would be useful
|
|
// information for debugging purposes later on. This new attribute could be
|
|
// used for `omp.loop`, but also for `do concurrent` transformations,
|
|
// `workshare`, `workdistribute`, etc. The tag could be used for all kinds of
|
|
// auto-generated operations using a dialect attribute (named something like
|
|
// `omp.origin` or `omp.derived`) and perhaps hold the name of the operation
|
|
// it was derived from, the reason it was transformed or something like that
|
|
// we could use when emitting any messages related to it later on.
|
|
template <typename OpTy, typename OpOperandsTy>
|
|
void
|
|
rewriteToSingleWrapperOp(mlir::omp::LoopOp loopOp,
|
|
mlir::ConversionPatternRewriter &rewriter) const {
|
|
OpOperandsTy clauseOps;
|
|
clauseOps.privateVars = loopOp.getPrivateVars();
|
|
|
|
auto privateSyms = loopOp.getPrivateSyms();
|
|
if (privateSyms)
|
|
clauseOps.privateSyms.assign(privateSyms->begin(), privateSyms->end());
|
|
|
|
Fortran::common::openmp::EntryBlockArgs args;
|
|
args.priv.vars = clauseOps.privateVars;
|
|
|
|
if constexpr (!std::is_same_v<OpOperandsTy,
|
|
mlir::omp::DistributeOperands>) {
|
|
populateReductionClauseOps(loopOp, clauseOps);
|
|
args.reduction.vars = clauseOps.reductionVars;
|
|
}
|
|
|
|
auto wrapperOp = rewriter.create<OpTy>(loopOp.getLoc(), clauseOps);
|
|
mlir::Block *opBlock = genEntryBlock(rewriter, args, wrapperOp.getRegion());
|
|
|
|
mlir::IRMapping mapper;
|
|
mlir::Block &loopBlock = *loopOp.getRegion().begin();
|
|
|
|
for (auto [loopOpArg, opArg] :
|
|
llvm::zip_equal(loopBlock.getArguments(), opBlock->getArguments()))
|
|
mapper.map(loopOpArg, opArg);
|
|
|
|
rewriter.clone(*loopOp.begin(), mapper);
|
|
}
|
|
|
|
void rewriteToDistributeParallelDo(
|
|
mlir::omp::LoopOp loopOp,
|
|
mlir::ConversionPatternRewriter &rewriter) const {
|
|
mlir::omp::ParallelOperands parallelClauseOps;
|
|
parallelClauseOps.privateVars = loopOp.getPrivateVars();
|
|
|
|
auto privateSyms = loopOp.getPrivateSyms();
|
|
if (privateSyms)
|
|
parallelClauseOps.privateSyms.assign(privateSyms->begin(),
|
|
privateSyms->end());
|
|
|
|
Fortran::common::openmp::EntryBlockArgs parallelArgs;
|
|
parallelArgs.priv.vars = parallelClauseOps.privateVars;
|
|
|
|
auto parallelOp = rewriter.create<mlir::omp::ParallelOp>(loopOp.getLoc(),
|
|
parallelClauseOps);
|
|
genEntryBlock(rewriter, parallelArgs, parallelOp.getRegion());
|
|
parallelOp.setComposite(true);
|
|
rewriter.setInsertionPoint(
|
|
rewriter.create<mlir::omp::TerminatorOp>(loopOp.getLoc()));
|
|
|
|
mlir::omp::DistributeOperands distributeClauseOps;
|
|
auto distributeOp = rewriter.create<mlir::omp::DistributeOp>(
|
|
loopOp.getLoc(), distributeClauseOps);
|
|
distributeOp.setComposite(true);
|
|
rewriter.createBlock(&distributeOp.getRegion());
|
|
|
|
mlir::omp::WsloopOperands wsloopClauseOps;
|
|
populateReductionClauseOps(loopOp, wsloopClauseOps);
|
|
Fortran::common::openmp::EntryBlockArgs wsloopArgs;
|
|
wsloopArgs.reduction.vars = wsloopClauseOps.reductionVars;
|
|
|
|
auto wsloopOp =
|
|
rewriter.create<mlir::omp::WsloopOp>(loopOp.getLoc(), wsloopClauseOps);
|
|
wsloopOp.setComposite(true);
|
|
genEntryBlock(rewriter, wsloopArgs, wsloopOp.getRegion());
|
|
|
|
mlir::IRMapping mapper;
|
|
|
|
auto loopBlockInterface =
|
|
llvm::cast<mlir::omp::BlockArgOpenMPOpInterface>(*loopOp);
|
|
auto parallelBlockInterface =
|
|
llvm::cast<mlir::omp::BlockArgOpenMPOpInterface>(*parallelOp);
|
|
auto wsloopBlockInterface =
|
|
llvm::cast<mlir::omp::BlockArgOpenMPOpInterface>(*wsloopOp);
|
|
|
|
for (auto [loopOpArg, parallelOpArg] :
|
|
llvm::zip_equal(loopBlockInterface.getPrivateBlockArgs(),
|
|
parallelBlockInterface.getPrivateBlockArgs()))
|
|
mapper.map(loopOpArg, parallelOpArg);
|
|
|
|
for (auto [loopOpArg, wsloopOpArg] :
|
|
llvm::zip_equal(loopBlockInterface.getReductionBlockArgs(),
|
|
wsloopBlockInterface.getReductionBlockArgs()))
|
|
mapper.map(loopOpArg, wsloopOpArg);
|
|
|
|
rewriter.clone(*loopOp.begin(), mapper);
|
|
}
|
|
|
|
void
|
|
populateReductionClauseOps(mlir::omp::LoopOp loopOp,
|
|
mlir::omp::ReductionClauseOps &clauseOps) const {
|
|
clauseOps.reductionMod = loopOp.getReductionModAttr();
|
|
clauseOps.reductionVars = loopOp.getReductionVars();
|
|
|
|
std::optional<mlir::ArrayAttr> reductionSyms = loopOp.getReductionSyms();
|
|
if (reductionSyms)
|
|
clauseOps.reductionSyms.assign(reductionSyms->begin(),
|
|
reductionSyms->end());
|
|
|
|
std::optional<llvm::ArrayRef<bool>> reductionByref =
|
|
loopOp.getReductionByref();
|
|
if (reductionByref)
|
|
clauseOps.reductionByref.assign(reductionByref->begin(),
|
|
reductionByref->end());
|
|
}
|
|
};
|
|
|
|
class GenericLoopConversionPass
|
|
: public flangomp::impl::GenericLoopConversionPassBase<
|
|
GenericLoopConversionPass> {
|
|
public:
|
|
GenericLoopConversionPass() = default;
|
|
|
|
void runOnOperation() override {
|
|
mlir::func::FuncOp func = getOperation();
|
|
|
|
if (func.isDeclaration())
|
|
return;
|
|
|
|
mlir::MLIRContext *context = &getContext();
|
|
mlir::RewritePatternSet patterns(context);
|
|
patterns.insert<GenericLoopConversionPattern>(context);
|
|
mlir::ConversionTarget target(*context);
|
|
|
|
target.markUnknownOpDynamicallyLegal(
|
|
[](mlir::Operation *) { return true; });
|
|
target.addDynamicallyLegalOp<mlir::omp::LoopOp>(
|
|
[](mlir::omp::LoopOp loopOp) {
|
|
return mlir::failed(
|
|
GenericLoopConversionPattern::checkLoopConversionSupportStatus(
|
|
loopOp));
|
|
});
|
|
|
|
if (mlir::failed(mlir::applyFullConversion(getOperation(), target,
|
|
std::move(patterns)))) {
|
|
mlir::emitError(func.getLoc(), "error in converting `omp.loop` op");
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|