Files
clang-p2996/mlir/lib/Conversion/GPUCommon/GPUOpsLowering.cpp
River Riddle 7ceffae18c [mlir] Convert OpTrait::FunctionLike to FunctionOpInterface
This commit refactors the FunctionLike trait into an interface (FunctionOpInterface).
FunctionLike as it is today is already a pseudo-interface, with many users checking the
presence of the trait and then manually into functionality implemented in the
function_like_impl namespace. By transitioning to an interface, these accesses are much
cleaner (ideally with no direct calls to the impl namespace outside of the implementation
of the derived function operations, e.g. for parsing/printing utilities).

I've tried to maintain as much compatability with the current state as possible, while
also trying to clean up as much of the cruft as possible. The general migration plan for
current users of FunctionLike is as follows:

* function_like_impl -> function_interface_impl
Realistically most user calls should remove references to functions within this namespace
outside of a vary narrow set (e.g. parsing/printing utilities). Calls to the attribute name
accessors should be migrated to the `FunctionOpInterface::` equivalent, most everything
else should be updated to be driven through an instance of the interface.

* OpTrait::FunctionLike -> FunctionOpInterface
`hasTrait` checks will need to be moved to isa, along with the other various Trait vs
Interface API differences.

* populateFunctionLikeTypeConversionPattern -> populateFunctionOpInterfaceTypeConversionPattern

Fixes #52917

Differential Revision: https://reviews.llvm.org/D117272
2022-01-18 20:56:53 -08:00

344 lines
15 KiB
C++

//===- GPUOpsLowering.cpp - GPU FuncOp / ReturnOp lowering ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "GPUOpsLowering.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Builders.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
LogicalResult
GPUFuncOpLowering::matchAndRewrite(gpu::GPUFuncOp gpuFuncOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = gpuFuncOp.getLoc();
SmallVector<LLVM::GlobalOp, 3> workgroupBuffers;
workgroupBuffers.reserve(gpuFuncOp.getNumWorkgroupAttributions());
for (const auto &en : llvm::enumerate(gpuFuncOp.getWorkgroupAttributions())) {
Value attribution = en.value();
auto type = attribution.getType().dyn_cast<MemRefType>();
assert(type && type.hasStaticShape() && "unexpected type in attribution");
uint64_t numElements = type.getNumElements();
auto elementType =
typeConverter->convertType(type.getElementType()).template cast<Type>();
auto arrayType = LLVM::LLVMArrayType::get(elementType, numElements);
std::string name = std::string(
llvm::formatv("__wg_{0}_{1}", gpuFuncOp.getName(), en.index()));
auto globalOp = rewriter.create<LLVM::GlobalOp>(
gpuFuncOp.getLoc(), arrayType, /*isConstant=*/false,
LLVM::Linkage::Internal, name, /*value=*/Attribute(),
/*alignment=*/0, gpu::GPUDialect::getWorkgroupAddressSpace());
workgroupBuffers.push_back(globalOp);
}
// Rewrite the original GPU function to an LLVM function.
auto funcType = typeConverter->convertType(gpuFuncOp.getType())
.template cast<LLVM::LLVMPointerType>()
.getElementType();
// Remap proper input types.
TypeConverter::SignatureConversion signatureConversion(
gpuFuncOp.front().getNumArguments());
getTypeConverter()->convertFunctionSignature(
gpuFuncOp.getType(), /*isVariadic=*/false, signatureConversion);
// Create the new function operation. Only copy those attributes that are
// not specific to function modeling.
SmallVector<NamedAttribute, 4> attributes;
for (const auto &attr : gpuFuncOp->getAttrs()) {
if (attr.getName() == SymbolTable::getSymbolAttrName() ||
attr.getName() == FunctionOpInterface::getTypeAttrName() ||
attr.getName() == gpu::GPUFuncOp::getNumWorkgroupAttributionsAttrName())
continue;
attributes.push_back(attr);
}
// Add a dialect specific kernel attribute in addition to GPU kernel
// attribute. The former is necessary for further translation while the
// latter is expected by gpu.launch_func.
if (gpuFuncOp.isKernel())
attributes.emplace_back(kernelAttributeName, rewriter.getUnitAttr());
auto llvmFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
gpuFuncOp.getLoc(), gpuFuncOp.getName(), funcType,
LLVM::Linkage::External, /*dsoLocal*/ false, attributes);
{
// Insert operations that correspond to converted workgroup and private
// memory attributions to the body of the function. This must operate on
// the original function, before the body region is inlined in the new
// function to maintain the relation between block arguments and the
// parent operation that assigns their semantics.
OpBuilder::InsertionGuard guard(rewriter);
// Rewrite workgroup memory attributions to addresses of global buffers.
rewriter.setInsertionPointToStart(&gpuFuncOp.front());
unsigned numProperArguments = gpuFuncOp.getNumArguments();
auto i32Type = IntegerType::get(rewriter.getContext(), 32);
Value zero = nullptr;
if (!workgroupBuffers.empty())
zero = rewriter.create<LLVM::ConstantOp>(loc, i32Type,
rewriter.getI32IntegerAttr(0));
for (const auto &en : llvm::enumerate(workgroupBuffers)) {
LLVM::GlobalOp global = en.value();
Value address = rewriter.create<LLVM::AddressOfOp>(loc, global);
auto elementType =
global.getType().cast<LLVM::LLVMArrayType>().getElementType();
Value memory = rewriter.create<LLVM::GEPOp>(
loc, LLVM::LLVMPointerType::get(elementType, global.getAddrSpace()),
address, ArrayRef<Value>{zero, zero});
// Build a memref descriptor pointing to the buffer to plug with the
// existing memref infrastructure. This may use more registers than
// otherwise necessary given that memref sizes are fixed, but we can try
// and canonicalize that away later.
Value attribution = gpuFuncOp.getWorkgroupAttributions()[en.index()];
auto type = attribution.getType().cast<MemRefType>();
auto descr = MemRefDescriptor::fromStaticShape(
rewriter, loc, *getTypeConverter(), type, memory);
signatureConversion.remapInput(numProperArguments + en.index(), descr);
}
// Rewrite private memory attributions to alloca'ed buffers.
unsigned numWorkgroupAttributions = gpuFuncOp.getNumWorkgroupAttributions();
auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
for (const auto &en : llvm::enumerate(gpuFuncOp.getPrivateAttributions())) {
Value attribution = en.value();
auto type = attribution.getType().cast<MemRefType>();
assert(type && type.hasStaticShape() && "unexpected type in attribution");
// Explicitly drop memory space when lowering private memory
// attributions since NVVM models it as `alloca`s in the default
// memory space and does not support `alloca`s with addrspace(5).
auto ptrType = LLVM::LLVMPointerType::get(
typeConverter->convertType(type.getElementType())
.template cast<Type>(),
allocaAddrSpace);
Value numElements = rewriter.create<LLVM::ConstantOp>(
gpuFuncOp.getLoc(), int64Ty,
rewriter.getI64IntegerAttr(type.getNumElements()));
Value allocated = rewriter.create<LLVM::AllocaOp>(
gpuFuncOp.getLoc(), ptrType, numElements, /*alignment=*/0);
auto descr = MemRefDescriptor::fromStaticShape(
rewriter, loc, *getTypeConverter(), type, allocated);
signatureConversion.remapInput(
numProperArguments + numWorkgroupAttributions + en.index(), descr);
}
}
// Move the region to the new function, update the entry block signature.
rewriter.inlineRegionBefore(gpuFuncOp.getBody(), llvmFuncOp.getBody(),
llvmFuncOp.end());
if (failed(rewriter.convertRegionTypes(&llvmFuncOp.getBody(), *typeConverter,
&signatureConversion)))
return failure();
rewriter.eraseOp(gpuFuncOp);
return success();
}
static const char formatStringPrefix[] = "printfFormat_";
template <typename T>
static LLVM::LLVMFuncOp getOrDefineFunction(T &moduleOp, const Location loc,
ConversionPatternRewriter &rewriter,
StringRef name,
LLVM::LLVMFunctionType type) {
LLVM::LLVMFuncOp ret;
if (!(ret = moduleOp.template lookupSymbol<LLVM::LLVMFuncOp>(name))) {
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
ret = rewriter.create<LLVM::LLVMFuncOp>(loc, name, type,
LLVM::Linkage::External);
}
return ret;
}
LogicalResult GPUPrintfOpToHIPLowering::matchAndRewrite(
gpu::PrintfOp gpuPrintfOp, gpu::PrintfOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = gpuPrintfOp->getLoc();
mlir::Type llvmI8 = typeConverter->convertType(rewriter.getI8Type());
mlir::Type i8Ptr = LLVM::LLVMPointerType::get(llvmI8);
mlir::Type llvmIndex = typeConverter->convertType(rewriter.getIndexType());
mlir::Type llvmI32 = typeConverter->convertType(rewriter.getI32Type());
mlir::Type llvmI64 = typeConverter->convertType(rewriter.getI64Type());
// Note: this is the GPUModule op, not the ModuleOp that surrounds it
// This ensures that global constants and declarations are placed within
// the device code, not the host code
auto moduleOp = gpuPrintfOp->getParentOfType<gpu::GPUModuleOp>();
auto ocklBegin =
getOrDefineFunction(moduleOp, loc, rewriter, "__ockl_printf_begin",
LLVM::LLVMFunctionType::get(llvmI64, {llvmI64}));
LLVM::LLVMFuncOp ocklAppendArgs;
if (!adaptor.args().empty()) {
ocklAppendArgs = getOrDefineFunction(
moduleOp, loc, rewriter, "__ockl_printf_append_args",
LLVM::LLVMFunctionType::get(
llvmI64, {llvmI64, /*numArgs*/ llvmI32, llvmI64, llvmI64, llvmI64,
llvmI64, llvmI64, llvmI64, llvmI64, /*isLast*/ llvmI32}));
}
auto ocklAppendStringN = getOrDefineFunction(
moduleOp, loc, rewriter, "__ockl_printf_append_string_n",
LLVM::LLVMFunctionType::get(
llvmI64,
{llvmI64, i8Ptr, /*length (bytes)*/ llvmI64, /*isLast*/ llvmI32}));
/// Start the printf hostcall
Value zeroI64 = rewriter.create<LLVM::ConstantOp>(
loc, llvmI64, rewriter.getI64IntegerAttr(0));
auto printfBeginCall = rewriter.create<LLVM::CallOp>(loc, ocklBegin, zeroI64);
Value printfDesc = printfBeginCall.getResult(0);
// Create a global constant for the format string
unsigned stringNumber = 0;
SmallString<16> stringConstName;
do {
stringConstName.clear();
(formatStringPrefix + Twine(stringNumber++)).toStringRef(stringConstName);
} while (moduleOp.lookupSymbol(stringConstName));
llvm::SmallString<20> formatString(adaptor.format());
formatString.push_back('\0'); // Null terminate for C
size_t formatStringSize = formatString.size_in_bytes();
auto globalType = LLVM::LLVMArrayType::get(llvmI8, formatStringSize);
LLVM::GlobalOp global;
{
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
global = rewriter.create<LLVM::GlobalOp>(
loc, globalType,
/*isConstant=*/true, LLVM::Linkage::Internal, stringConstName,
rewriter.getStringAttr(formatString));
}
// Get a pointer to the format string's first element and pass it to printf()
Value globalPtr = rewriter.create<LLVM::AddressOfOp>(loc, global);
Value zero = rewriter.create<LLVM::ConstantOp>(
loc, llvmIndex, rewriter.getIntegerAttr(llvmIndex, 0));
Value stringStart = rewriter.create<LLVM::GEPOp>(
loc, i8Ptr, globalPtr, mlir::ValueRange({zero, zero}));
Value stringLen = rewriter.create<LLVM::ConstantOp>(
loc, llvmI64, rewriter.getI64IntegerAttr(formatStringSize));
Value oneI32 = rewriter.create<LLVM::ConstantOp>(
loc, llvmI32, rewriter.getI32IntegerAttr(1));
Value zeroI32 = rewriter.create<LLVM::ConstantOp>(
loc, llvmI32, rewriter.getI32IntegerAttr(0));
auto appendFormatCall = rewriter.create<LLVM::CallOp>(
loc, ocklAppendStringN,
ValueRange{printfDesc, stringStart, stringLen,
adaptor.args().empty() ? oneI32 : zeroI32});
printfDesc = appendFormatCall.getResult(0);
// __ockl_printf_append_args takes 7 values per append call
constexpr size_t argsPerAppend = 7;
size_t nArgs = adaptor.args().size();
for (size_t group = 0; group < nArgs; group += argsPerAppend) {
size_t bound = std::min(group + argsPerAppend, nArgs);
size_t numArgsThisCall = bound - group;
SmallVector<mlir::Value, 2 + argsPerAppend + 1> arguments;
arguments.push_back(printfDesc);
arguments.push_back(rewriter.create<LLVM::ConstantOp>(
loc, llvmI32, rewriter.getI32IntegerAttr(numArgsThisCall)));
for (size_t i = group; i < bound; ++i) {
Value arg = adaptor.args()[i];
if (auto floatType = arg.getType().dyn_cast<FloatType>()) {
if (!floatType.isF64())
arg = rewriter.create<LLVM::FPExtOp>(
loc, typeConverter->convertType(rewriter.getF64Type()), arg);
arg = rewriter.create<LLVM::BitcastOp>(loc, llvmI64, arg);
}
if (arg.getType().getIntOrFloatBitWidth() != 64)
arg = rewriter.create<LLVM::ZExtOp>(loc, llvmI64, arg);
arguments.push_back(arg);
}
// Pad out to 7 arguments since the hostcall always needs 7
for (size_t extra = numArgsThisCall; extra < argsPerAppend; ++extra) {
arguments.push_back(zeroI64);
}
auto isLast = (bound == nArgs) ? oneI32 : zeroI32;
arguments.push_back(isLast);
auto call = rewriter.create<LLVM::CallOp>(loc, ocklAppendArgs, arguments);
printfDesc = call.getResult(0);
}
rewriter.eraseOp(gpuPrintfOp);
return success();
}
LogicalResult GPUPrintfOpToLLVMCallLowering::matchAndRewrite(
gpu::PrintfOp gpuPrintfOp, gpu::PrintfOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = gpuPrintfOp->getLoc();
mlir::Type llvmI8 = typeConverter->convertType(rewriter.getIntegerType(8));
mlir::Type i8Ptr = LLVM::LLVMPointerType::get(llvmI8, addressSpace);
mlir::Type llvmIndex = typeConverter->convertType(rewriter.getIndexType());
// Note: this is the GPUModule op, not the ModuleOp that surrounds it
// This ensures that global constants and declarations are placed within
// the device code, not the host code
auto moduleOp = gpuPrintfOp->getParentOfType<gpu::GPUModuleOp>();
auto printfType = LLVM::LLVMFunctionType::get(rewriter.getI32Type(), {i8Ptr},
/*isVarArg=*/true);
LLVM::LLVMFuncOp printfDecl =
getOrDefineFunction(moduleOp, loc, rewriter, "printf", printfType);
// Create a global constant for the format string
unsigned stringNumber = 0;
SmallString<16> stringConstName;
do {
stringConstName.clear();
(formatStringPrefix + Twine(stringNumber++)).toStringRef(stringConstName);
} while (moduleOp.lookupSymbol(stringConstName));
llvm::SmallString<20> formatString(adaptor.format());
formatString.push_back('\0'); // Null terminate for C
auto globalType =
LLVM::LLVMArrayType::get(llvmI8, formatString.size_in_bytes());
LLVM::GlobalOp global;
{
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
global = rewriter.create<LLVM::GlobalOp>(
loc, globalType,
/*isConstant=*/true, LLVM::Linkage::Internal, stringConstName,
rewriter.getStringAttr(formatString), /*allignment=*/0, addressSpace);
}
// Get a pointer to the format string's first element
Value globalPtr = rewriter.create<LLVM::AddressOfOp>(loc, global);
Value zero = rewriter.create<LLVM::ConstantOp>(
loc, llvmIndex, rewriter.getIntegerAttr(llvmIndex, 0));
Value stringStart = rewriter.create<LLVM::GEPOp>(
loc, i8Ptr, globalPtr, mlir::ValueRange({zero, zero}));
// Construct arguments and function call
auto argsRange = adaptor.args();
SmallVector<Value, 4> printfArgs;
printfArgs.reserve(argsRange.size() + 1);
printfArgs.push_back(stringStart);
printfArgs.append(argsRange.begin(), argsRange.end());
rewriter.create<LLVM::CallOp>(loc, printfDecl, printfArgs);
rewriter.eraseOp(gpuPrintfOp);
return success();
}