Files
clang-p2996/llvm/lib/Target/DirectX/DXILShaderFlags.cpp
Deric C. acdba28e14 [DirectX] Set whole-module flags prior to evaluating per-function flags (#139967)
Fixes #139024 and #139954

- Refactor DXILShaderFlags to compute the flags that apply to a whole
module before computing flags that apply individually to each function
- Make DXILResourceMap const, since it is not modified in
DXILShaderFlags
- Per-function shader flag analysis now initially starts with the set of
flags that apply to the whole module instead of starting from no flags.
This change fixes the above linked issues
- Fix shader flag tests affected by the above change
2025-05-15 13:43:29 -07:00

419 lines
15 KiB
C++

//===- DXILShaderFlags.cpp - DXIL Shader Flags helper objects -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file This file contains helper objects and APIs for working with DXIL
/// Shader Flags.
///
//===----------------------------------------------------------------------===//
#include "DXILShaderFlags.h"
#include "DirectX.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/DXILResource.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsDirectX.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::dxil;
static bool hasUAVsAtEveryStage(const DXILResourceMap &DRM,
const ModuleMetadataInfo &MMDI) {
if (DRM.uavs().empty())
return false;
switch (MMDI.ShaderProfile) {
default:
return false;
case Triple::EnvironmentType::Compute:
case Triple::EnvironmentType::Pixel:
return false;
case Triple::EnvironmentType::Vertex:
case Triple::EnvironmentType::Geometry:
case Triple::EnvironmentType::Hull:
case Triple::EnvironmentType::Domain:
return true;
case Triple::EnvironmentType::Library:
case Triple::EnvironmentType::RayGeneration:
case Triple::EnvironmentType::Intersection:
case Triple::EnvironmentType::AnyHit:
case Triple::EnvironmentType::ClosestHit:
case Triple::EnvironmentType::Miss:
case Triple::EnvironmentType::Callable:
case Triple::EnvironmentType::Mesh:
case Triple::EnvironmentType::Amplification:
return MMDI.ValidatorVersion < VersionTuple(1, 8);
}
}
static bool checkWaveOps(Intrinsic::ID IID) {
// Currently unsupported intrinsics
// case Intrinsic::dx_wave_getlanecount:
// case Intrinsic::dx_wave_allequal:
// case Intrinsic::dx_wave_ballot:
// case Intrinsic::dx_wave_readfirst:
// case Intrinsic::dx_wave_reduce.and:
// case Intrinsic::dx_wave_reduce.or:
// case Intrinsic::dx_wave_reduce.xor:
// case Intrinsic::dx_wave_prefixop:
// case Intrinsic::dx_quad.readat:
// case Intrinsic::dx_quad.readacrossx:
// case Intrinsic::dx_quad.readacrossy:
// case Intrinsic::dx_quad.readacrossdiagonal:
// case Intrinsic::dx_wave_prefixballot:
// case Intrinsic::dx_wave_match:
// case Intrinsic::dx_wavemulti.*:
// case Intrinsic::dx_wavemulti.ballot:
// case Intrinsic::dx_quad.vote:
switch (IID) {
default:
return false;
case Intrinsic::dx_wave_is_first_lane:
case Intrinsic::dx_wave_getlaneindex:
case Intrinsic::dx_wave_any:
case Intrinsic::dx_wave_all:
case Intrinsic::dx_wave_readlane:
case Intrinsic::dx_wave_active_countbits:
// Wave Active Op Variants
case Intrinsic::dx_wave_reduce_sum:
case Intrinsic::dx_wave_reduce_usum:
case Intrinsic::dx_wave_reduce_max:
case Intrinsic::dx_wave_reduce_umax:
return true;
}
}
/// Update the shader flags mask based on the given instruction.
/// \param CSF Shader flags mask to update.
/// \param I Instruction to check.
void ModuleShaderFlags::updateFunctionFlags(ComputedShaderFlags &CSF,
const Instruction &I,
DXILResourceTypeMap &DRTM,
const ModuleMetadataInfo &MMDI) {
if (!CSF.Doubles)
CSF.Doubles = I.getType()->isDoubleTy();
if (!CSF.Doubles) {
for (const Value *Op : I.operands()) {
if (Op->getType()->isDoubleTy()) {
CSF.Doubles = true;
break;
}
}
}
if (CSF.Doubles) {
switch (I.getOpcode()) {
case Instruction::FDiv:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
CSF.DX11_1_DoubleExtensions = true;
break;
}
}
if (!CSF.LowPrecisionPresent)
CSF.LowPrecisionPresent =
I.getType()->isIntegerTy(16) || I.getType()->isHalfTy();
if (!CSF.LowPrecisionPresent) {
for (const Value *Op : I.operands()) {
if (Op->getType()->isIntegerTy(16) || Op->getType()->isHalfTy()) {
CSF.LowPrecisionPresent = true;
break;
}
}
}
if (CSF.LowPrecisionPresent) {
if (CSF.NativeLowPrecisionMode)
CSF.NativeLowPrecision = true;
else
CSF.MinimumPrecision = true;
}
if (!CSF.Int64Ops)
CSF.Int64Ops = I.getType()->isIntegerTy(64);
if (!CSF.Int64Ops) {
for (const Value *Op : I.operands()) {
if (Op->getType()->isIntegerTy(64)) {
CSF.Int64Ops = true;
break;
}
}
}
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
switch (II->getIntrinsicID()) {
default:
break;
case Intrinsic::dx_resource_handlefrombinding: {
dxil::ResourceTypeInfo &RTI = DRTM[cast<TargetExtType>(II->getType())];
// Set ResMayNotAlias if DXIL validator version >= 1.8 and the function
// uses UAVs
if (!CSF.ResMayNotAlias && CanSetResMayNotAlias &&
MMDI.ValidatorVersion >= VersionTuple(1, 8) && RTI.isUAV())
CSF.ResMayNotAlias = true;
switch (RTI.getResourceKind()) {
case dxil::ResourceKind::StructuredBuffer:
case dxil::ResourceKind::RawBuffer:
CSF.EnableRawAndStructuredBuffers = true;
break;
default:
break;
}
break;
}
case Intrinsic::dx_resource_load_typedbuffer: {
dxil::ResourceTypeInfo &RTI =
DRTM[cast<TargetExtType>(II->getArgOperand(0)->getType())];
if (RTI.isTyped())
CSF.TypedUAVLoadAdditionalFormats |= RTI.getTyped().ElementCount > 1;
break;
}
}
}
// Handle call instructions
if (auto *CI = dyn_cast<CallInst>(&I)) {
const Function *CF = CI->getCalledFunction();
// Merge-in shader flags mask of the called function in the current module
if (FunctionFlags.contains(CF))
CSF.merge(FunctionFlags[CF]);
// TODO: Set DX11_1_DoubleExtensions if I is a call to DXIL intrinsic
// DXIL::Opcode::Fma https://github.com/llvm/llvm-project/issues/114554
CSF.WaveOps |= checkWaveOps(CI->getIntrinsicID());
}
}
/// Set shader flags that apply to all functions within the module
ComputedShaderFlags
ModuleShaderFlags::gatherGlobalModuleFlags(const Module &M,
const DXILResourceMap &DRM,
const ModuleMetadataInfo &MMDI) {
ComputedShaderFlags CSF;
// Set DisableOptimizations flag based on the presence of OptimizeNone
// attribute of entry functions.
if (MMDI.EntryPropertyVec.size() > 0) {
CSF.DisableOptimizations = MMDI.EntryPropertyVec[0].Entry->hasFnAttribute(
llvm::Attribute::OptimizeNone);
// Ensure all entry functions have the same optimization attribute
for (const auto &EntryFunProps : MMDI.EntryPropertyVec)
if (CSF.DisableOptimizations !=
EntryFunProps.Entry->hasFnAttribute(llvm::Attribute::OptimizeNone))
EntryFunProps.Entry->getContext().diagnose(DiagnosticInfoUnsupported(
*(EntryFunProps.Entry), "Inconsistent optnone attribute "));
}
CSF.UAVsAtEveryStage = hasUAVsAtEveryStage(DRM, MMDI);
// Set the Max64UAVs flag if the number of UAVs is > 8
uint32_t NumUAVs = 0;
for (auto &UAV : DRM.uavs())
if (MMDI.ValidatorVersion < VersionTuple(1, 6))
NumUAVs++;
else // MMDI.ValidatorVersion >= VersionTuple(1, 6)
NumUAVs += UAV.getBinding().Size;
if (NumUAVs > 8)
CSF.Max64UAVs = true;
// Set the module flag that enables native low-precision execution mode.
// NativeLowPrecisionMode can only be set when the command line option
// -enable-16bit-types is provided. This is indicated by the dx.nativelowprec
// module flag being set
// This flag is needed even if the module does not use 16-bit types because a
// corresponding debug module may include 16-bit types, and tools that use the
// debug module may expect it to have the same flags as the original
if (auto *NativeLowPrec = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("dx.nativelowprec")))
if (MMDI.ShaderModelVersion >= VersionTuple(6, 2))
CSF.NativeLowPrecisionMode = NativeLowPrec->getValue().getBoolValue();
// Set ResMayNotAlias to true if DXIL validator version < 1.8 and there
// are UAVs present globally.
if (CanSetResMayNotAlias && MMDI.ValidatorVersion < VersionTuple(1, 8))
CSF.ResMayNotAlias = !DRM.uavs().empty();
return CSF;
}
/// Construct ModuleShaderFlags for module Module M
void ModuleShaderFlags::initialize(Module &M, DXILResourceTypeMap &DRTM,
const DXILResourceMap &DRM,
const ModuleMetadataInfo &MMDI) {
CanSetResMayNotAlias = MMDI.DXILVersion >= VersionTuple(1, 7);
// The command line option -res-may-alias will set the dx.resmayalias module
// flag to 1, thereby disabling the ability to set the ResMayNotAlias flag
if (auto *ResMayAlias = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("dx.resmayalias")))
if (ResMayAlias->getValue().getBoolValue())
CanSetResMayNotAlias = false;
ComputedShaderFlags GlobalSFMask = gatherGlobalModuleFlags(M, DRM, MMDI);
CallGraph CG(M);
// Compute Shader Flags Mask for all functions using post-order visit of SCC
// of the call graph.
for (scc_iterator<CallGraph *> SCCI = scc_begin(&CG); !SCCI.isAtEnd();
++SCCI) {
const std::vector<CallGraphNode *> &CurSCC = *SCCI;
// Union of shader masks of all functions in CurSCC
ComputedShaderFlags SCCSF;
// List of functions in CurSCC that are neither external nor declarations
// and hence whose flags are collected
SmallVector<Function *> CurSCCFuncs;
for (CallGraphNode *CGN : CurSCC) {
Function *F = CGN->getFunction();
if (!F)
continue;
if (F->isDeclaration()) {
assert(!F->getName().starts_with("dx.op.") &&
"DXIL Shader Flag analysis should not be run post-lowering.");
continue;
}
ComputedShaderFlags CSF = GlobalSFMask;
for (const auto &BB : *F)
for (const auto &I : BB)
updateFunctionFlags(CSF, I, DRTM, MMDI);
// Update combined shader flags mask for all functions in this SCC
SCCSF.merge(CSF);
CurSCCFuncs.push_back(F);
}
// Update combined shader flags mask for all functions of the module
CombinedSFMask.merge(SCCSF);
// Shader flags mask of each of the functions in an SCC of the call graph is
// the union of all functions in the SCC. Update shader flags masks of
// functions in CurSCC accordingly. This is trivially true if SCC contains
// one function.
for (Function *F : CurSCCFuncs)
// Merge SCCSF with that of F
FunctionFlags[F].merge(SCCSF);
}
}
void ComputedShaderFlags::print(raw_ostream &OS) const {
uint64_t FlagVal = (uint64_t) * this;
OS << formatv("; Shader Flags Value: {0:x8}\n;\n", FlagVal);
if (FlagVal == 0)
return;
OS << "; Note: shader requires additional functionality:\n";
#define SHADER_FEATURE_FLAG(FeatureBit, DxilModuleNum, FlagName, Str) \
if (FlagName) \
(OS << ";").indent(7) << Str << "\n";
#include "llvm/BinaryFormat/DXContainerConstants.def"
OS << "; Note: extra DXIL module flags:\n";
#define DXIL_MODULE_FLAG(DxilModuleBit, FlagName, Str) \
if (FlagName) \
(OS << ";").indent(7) << Str << "\n";
#include "llvm/BinaryFormat/DXContainerConstants.def"
OS << ";\n";
}
/// Return the shader flags mask of the specified function Func.
const ComputedShaderFlags &
ModuleShaderFlags::getFunctionFlags(const Function *Func) const {
auto Iter = FunctionFlags.find(Func);
assert((Iter != FunctionFlags.end() && Iter->first == Func) &&
"Get Shader Flags : No Shader Flags Mask exists for function");
return Iter->second;
}
//===----------------------------------------------------------------------===//
// ShaderFlagsAnalysis and ShaderFlagsAnalysisPrinterPass
// Provide an explicit template instantiation for the static ID.
AnalysisKey ShaderFlagsAnalysis::Key;
ModuleShaderFlags ShaderFlagsAnalysis::run(Module &M,
ModuleAnalysisManager &AM) {
DXILResourceTypeMap &DRTM = AM.getResult<DXILResourceTypeAnalysis>(M);
DXILResourceMap &DRM = AM.getResult<DXILResourceAnalysis>(M);
const ModuleMetadataInfo MMDI = AM.getResult<DXILMetadataAnalysis>(M);
ModuleShaderFlags MSFI;
MSFI.initialize(M, DRTM, DRM, MMDI);
return MSFI;
}
PreservedAnalyses ShaderFlagsAnalysisPrinter::run(Module &M,
ModuleAnalysisManager &AM) {
const ModuleShaderFlags &FlagsInfo = AM.getResult<ShaderFlagsAnalysis>(M);
// Print description of combined shader flags for all module functions
OS << "; Combined Shader Flags for Module\n";
FlagsInfo.getCombinedFlags().print(OS);
// Print shader flags mask for each of the module functions
OS << "; Shader Flags for Module Functions\n";
for (const auto &F : M.getFunctionList()) {
if (F.isDeclaration())
continue;
const ComputedShaderFlags &SFMask = FlagsInfo.getFunctionFlags(&F);
OS << formatv("; Function {0} : {1:x8}\n;\n", F.getName(),
(uint64_t)(SFMask));
}
return PreservedAnalyses::all();
}
//===----------------------------------------------------------------------===//
// ShaderFlagsAnalysis and ShaderFlagsAnalysisPrinterPass
bool ShaderFlagsAnalysisWrapper::runOnModule(Module &M) {
DXILResourceTypeMap &DRTM =
getAnalysis<DXILResourceTypeWrapperPass>().getResourceTypeMap();
DXILResourceMap &DRM =
getAnalysis<DXILResourceWrapperPass>().getResourceMap();
const ModuleMetadataInfo MMDI =
getAnalysis<DXILMetadataAnalysisWrapperPass>().getModuleMetadata();
MSFI.initialize(M, DRTM, DRM, MMDI);
return false;
}
void ShaderFlagsAnalysisWrapper::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<DXILResourceTypeWrapperPass>();
AU.addRequiredTransitive<DXILResourceWrapperPass>();
AU.addRequired<DXILMetadataAnalysisWrapperPass>();
}
char ShaderFlagsAnalysisWrapper::ID = 0;
INITIALIZE_PASS_BEGIN(ShaderFlagsAnalysisWrapper, "dx-shader-flag-analysis",
"DXIL Shader Flag Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(DXILResourceTypeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DXILMetadataAnalysisWrapperPass)
INITIALIZE_PASS_END(ShaderFlagsAnalysisWrapper, "dx-shader-flag-analysis",
"DXIL Shader Flag Analysis", true, true)