156 lines
5.5 KiB
C++
156 lines
5.5 KiB
C++
//===- ShapeToSCF.cpp - conversion from Shape to SCF dialect --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/ShapeToSCF/ShapeToSCF.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::shape;
|
|
|
|
namespace {
|
|
/// Converts `shape.reduce` to `scf.for`.
|
|
struct ReduceOpConverter : public OpRewritePattern<ReduceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ReduceOp op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
ReduceOpConverter::matchAndRewrite(ReduceOp reduceOp,
|
|
PatternRewriter &rewriter) const {
|
|
auto loc = reduceOp.getLoc();
|
|
|
|
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
|
|
Value extentTensor = rewriter.create<ToExtentTensorOp>(
|
|
loc,
|
|
RankedTensorType::get({ShapedType::kDynamicSize},
|
|
rewriter.getIndexType()),
|
|
reduceOp.shape());
|
|
Value size =
|
|
rewriter.create<DimOp>(loc, rewriter.getIndexType(), extentTensor, zero);
|
|
|
|
auto loop = rewriter.create<scf::ForOp>(
|
|
loc, zero, size, one, reduceOp.initVals(),
|
|
[&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
|
|
Value indexExtent = b.create<ExtractElementOp>(loc, extentTensor, iv);
|
|
Value sizeExtent = b.create<IndexToSizeOp>(loc, indexExtent);
|
|
|
|
SmallVector<Value, 2> mapped_values{iv, sizeExtent};
|
|
mapped_values.append(args.begin(), args.end());
|
|
|
|
BlockAndValueMapping mapping;
|
|
Block *reduceBody = reduceOp.getBody();
|
|
mapping.map(reduceBody->getArguments(), mapped_values);
|
|
for (auto &nested : reduceBody->without_terminator())
|
|
b.clone(nested, mapping);
|
|
|
|
SmallVector<Value, 2> mappedResults;
|
|
for (auto result : reduceBody->getTerminator()->getOperands())
|
|
mappedResults.push_back(mapping.lookup(result));
|
|
b.create<scf::YieldOp>(loc, mappedResults);
|
|
});
|
|
|
|
rewriter.replaceOp(reduceOp, loop.getResults());
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Converts `shape_of` to for loop for unranked tensors.
|
|
class ShapeOfOpConverter : public OpConversionPattern<ShapeOfOp> {
|
|
public:
|
|
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
ShapeOfOpConverter::matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
ShapeOfOp::Adaptor transformed(operands);
|
|
auto tensorVal = transformed.arg();
|
|
auto tensorTy = tensorVal.getType();
|
|
|
|
// For ranked tensors `shape_of` lowers to `std` and the pattern can be
|
|
// found in the corresponding pass.
|
|
if (tensorTy.isa<RankedTensorType>())
|
|
return failure();
|
|
|
|
// Allocate stack memory.
|
|
auto loc = op.getLoc();
|
|
auto rankVal = rewriter.create<mlir::RankOp>(loc, tensorVal);
|
|
auto i64Ty = rewriter.getI64Type();
|
|
auto memTy = MemRefType::get({ShapedType::kDynamicSize}, i64Ty);
|
|
auto memVal = rewriter.create<AllocaOp>(loc, memTy, ValueRange({rankVal}));
|
|
|
|
// Copy shape extents to stack-allocated memory.
|
|
auto zeroVal = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
auto oneVal = rewriter.create<ConstantIndexOp>(loc, 1);
|
|
rewriter.create<scf::ForOp>(
|
|
loc, zeroVal, rankVal, oneVal, ValueRange(),
|
|
[&](OpBuilder &b, Location loc, Value iVal, ValueRange args) {
|
|
auto dimVal = b.create<DimOp>(loc, tensorVal, iVal);
|
|
auto dimIntVal = b.create<IndexCastOp>(loc, dimVal, i64Ty);
|
|
b.create<StoreOp>(loc, dimIntVal, memVal, ValueRange({iVal}));
|
|
b.create<scf::YieldOp>(loc);
|
|
});
|
|
|
|
// Load extents to tensor value.
|
|
auto shapeIntVal = rewriter.create<TensorLoadOp>(loc, memVal);
|
|
auto indexTy = rewriter.getIndexType();
|
|
auto shapeTy = RankedTensorType::get({ShapedType::kDynamicSize}, indexTy);
|
|
rewriter.replaceOpWithNewOp<IndexCastOp>(op.getOperation(), shapeIntVal,
|
|
shapeTy);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
struct ConvertShapeToSCFPass
|
|
: public ConvertShapeToSCFBase<ConvertShapeToSCFPass> {
|
|
void runOnFunction() override;
|
|
};
|
|
} // namespace
|
|
|
|
void ConvertShapeToSCFPass::runOnFunction() {
|
|
MLIRContext &ctx = getContext();
|
|
|
|
// Populate conversion patterns.
|
|
OwningRewritePatternList patterns;
|
|
populateShapeToSCFConversionPatterns(patterns, &ctx);
|
|
|
|
// Setup target legality.
|
|
ConversionTarget target(getContext());
|
|
target.addLegalDialect<ShapeDialect, scf::SCFDialect, StandardOpsDialect>();
|
|
target.addIllegalOp<ReduceOp, ShapeOfOp>();
|
|
|
|
// Apply conversion.
|
|
if (failed(applyPartialConversion(getFunction(), target, patterns)))
|
|
signalPassFailure();
|
|
}
|
|
|
|
void mlir::populateShapeToSCFConversionPatterns(
|
|
OwningRewritePatternList &patterns, MLIRContext *ctx) {
|
|
patterns.insert<ReduceOpConverter, ShapeOfOpConverter>(ctx);
|
|
}
|
|
|
|
std::unique_ptr<FunctionPass> mlir::createConvertShapeToSCFPass() {
|
|
return std::make_unique<ConvertShapeToSCFPass>();
|
|
}
|