Files
clang-p2996/mlir/lib/Conversion/ShapeToSCF/ShapeToSCF.cpp
2020-06-25 09:40:08 +00:00

156 lines
5.5 KiB
C++

//===- ShapeToSCF.cpp - conversion from Shape to SCF dialect --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ShapeToSCF/ShapeToSCF.h"
#include "../PassDetail.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::shape;
namespace {
/// Converts `shape.reduce` to `scf.for`.
struct ReduceOpConverter : public OpRewritePattern<ReduceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ReduceOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ReduceOpConverter::matchAndRewrite(ReduceOp reduceOp,
PatternRewriter &rewriter) const {
auto loc = reduceOp.getLoc();
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
Value extentTensor = rewriter.create<ToExtentTensorOp>(
loc,
RankedTensorType::get({ShapedType::kDynamicSize},
rewriter.getIndexType()),
reduceOp.shape());
Value size =
rewriter.create<DimOp>(loc, rewriter.getIndexType(), extentTensor, zero);
auto loop = rewriter.create<scf::ForOp>(
loc, zero, size, one, reduceOp.initVals(),
[&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
Value indexExtent = b.create<ExtractElementOp>(loc, extentTensor, iv);
Value sizeExtent = b.create<IndexToSizeOp>(loc, indexExtent);
SmallVector<Value, 2> mapped_values{iv, sizeExtent};
mapped_values.append(args.begin(), args.end());
BlockAndValueMapping mapping;
Block *reduceBody = reduceOp.getBody();
mapping.map(reduceBody->getArguments(), mapped_values);
for (auto &nested : reduceBody->without_terminator())
b.clone(nested, mapping);
SmallVector<Value, 2> mappedResults;
for (auto result : reduceBody->getTerminator()->getOperands())
mappedResults.push_back(mapping.lookup(result));
b.create<scf::YieldOp>(loc, mappedResults);
});
rewriter.replaceOp(reduceOp, loop.getResults());
return success();
}
namespace {
/// Converts `shape_of` to for loop for unranked tensors.
class ShapeOfOpConverter : public OpConversionPattern<ShapeOfOp> {
public:
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
ShapeOfOpConverter::matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
ShapeOfOp::Adaptor transformed(operands);
auto tensorVal = transformed.arg();
auto tensorTy = tensorVal.getType();
// For ranked tensors `shape_of` lowers to `std` and the pattern can be
// found in the corresponding pass.
if (tensorTy.isa<RankedTensorType>())
return failure();
// Allocate stack memory.
auto loc = op.getLoc();
auto rankVal = rewriter.create<mlir::RankOp>(loc, tensorVal);
auto i64Ty = rewriter.getI64Type();
auto memTy = MemRefType::get({ShapedType::kDynamicSize}, i64Ty);
auto memVal = rewriter.create<AllocaOp>(loc, memTy, ValueRange({rankVal}));
// Copy shape extents to stack-allocated memory.
auto zeroVal = rewriter.create<ConstantIndexOp>(loc, 0);
auto oneVal = rewriter.create<ConstantIndexOp>(loc, 1);
rewriter.create<scf::ForOp>(
loc, zeroVal, rankVal, oneVal, ValueRange(),
[&](OpBuilder &b, Location loc, Value iVal, ValueRange args) {
auto dimVal = b.create<DimOp>(loc, tensorVal, iVal);
auto dimIntVal = b.create<IndexCastOp>(loc, dimVal, i64Ty);
b.create<StoreOp>(loc, dimIntVal, memVal, ValueRange({iVal}));
b.create<scf::YieldOp>(loc);
});
// Load extents to tensor value.
auto shapeIntVal = rewriter.create<TensorLoadOp>(loc, memVal);
auto indexTy = rewriter.getIndexType();
auto shapeTy = RankedTensorType::get({ShapedType::kDynamicSize}, indexTy);
rewriter.replaceOpWithNewOp<IndexCastOp>(op.getOperation(), shapeIntVal,
shapeTy);
return success();
}
namespace {
struct ConvertShapeToSCFPass
: public ConvertShapeToSCFBase<ConvertShapeToSCFPass> {
void runOnFunction() override;
};
} // namespace
void ConvertShapeToSCFPass::runOnFunction() {
MLIRContext &ctx = getContext();
// Populate conversion patterns.
OwningRewritePatternList patterns;
populateShapeToSCFConversionPatterns(patterns, &ctx);
// Setup target legality.
ConversionTarget target(getContext());
target.addLegalDialect<ShapeDialect, scf::SCFDialect, StandardOpsDialect>();
target.addIllegalOp<ReduceOp, ShapeOfOp>();
// Apply conversion.
if (failed(applyPartialConversion(getFunction(), target, patterns)))
signalPassFailure();
}
void mlir::populateShapeToSCFConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
patterns.insert<ReduceOpConverter, ShapeOfOpConverter>(ctx);
}
std::unique_ptr<FunctionPass> mlir::createConvertShapeToSCFPass() {
return std::make_unique<ConvertShapeToSCFPass>();
}