Files
clang-p2996/mlir/lib/Conversion/VectorToROCDL/VectorToROCDL.cpp
River Riddle 8d67d187ba [mlir][DialectConversion] Refactor how block argument types get converted
This revision removes the TypeConverter parameter passed to the apply* methods, and instead moves the responsibility of region type conversion to patterns. The types of a region can be converted using the 'convertRegionTypes' method, which acts similarly to the existing 'applySignatureConversion'. This method ensures that all blocks within, and including those moved into, a region will have the block argument types converted using the provided converter.

This has the benefit of making more of the legalization logic controlled by patterns, instead of being handled explicitly by the driver. It also opens up the possibility to support multiple type conversions at some point in the future.

This revision also adds a new utility class `FailureOr<T>` that provides a LogicalResult friendly facility for returning a failure or a valid result value.

Differential Revision: https://reviews.llvm.org/D81681
2020-06-18 15:59:22 -07:00

184 lines
7.4 KiB
C++

//===- VectorToROCDL.cpp - Vector to ROCDL lowering passes ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to generate ROCDLIR operations for higher-level
// Vector operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToROCDL/VectorToROCDL.h"
#include "../PassDetail.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/ROCDLDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::vector;
static LogicalResult replaceTransferOpWithMubuf(
ConversionPatternRewriter &rewriter, ArrayRef<Value> operands,
LLVMTypeConverter &typeConverter, Location loc, TransferReadOp xferOp,
LLVM::LLVMType &vecTy, Value &dwordConfig, Value &vindex,
Value &offsetSizeInBytes, Value &glc, Value &slc) {
rewriter.replaceOpWithNewOp<ROCDL::MubufLoadOp>(
xferOp, vecTy, dwordConfig, vindex, offsetSizeInBytes, glc, slc);
return success();
}
static LogicalResult replaceTransferOpWithMubuf(
ConversionPatternRewriter &rewriter, ArrayRef<Value> operands,
LLVMTypeConverter &typeConverter, Location loc, TransferWriteOp xferOp,
LLVM::LLVMType &vecTy, Value &dwordConfig, Value &vindex,
Value &offsetSizeInBytes, Value &glc, Value &slc) {
auto adaptor = TransferWriteOpAdaptor(operands);
rewriter.replaceOpWithNewOp<ROCDL::MubufStoreOp>(xferOp, adaptor.vector(),
dwordConfig, vindex,
offsetSizeInBytes, glc, slc);
return success();
}
namespace {
/// Conversion pattern that converts a 1-D vector transfer read/write.
/// Note that this conversion pass only converts vector x2 or x4 f32
/// types. For unsupported cases, they will fall back to the vector to
/// llvm conversion pattern.
template <typename ConcreteOp>
class VectorTransferConversion : public ConvertToLLVMPattern {
public:
explicit VectorTransferConversion(MLIRContext *context,
LLVMTypeConverter &typeConv)
: ConvertToLLVMPattern(ConcreteOp::getOperationName(), context,
typeConv) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto xferOp = cast<ConcreteOp>(op);
typename ConcreteOp::Adaptor adaptor(operands);
if (xferOp.getVectorType().getRank() > 1 ||
llvm::size(xferOp.indices()) == 0)
return failure();
if (!AffineMap::isMinorIdentity(xferOp.permutation_map()))
return failure();
// Have it handled in vector->llvm conversion pass.
if (!xferOp.isMaskedDim(0))
return failure();
auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
LLVM::LLVMType vecTy =
toLLVMTy(xferOp.getVectorType()).template cast<LLVM::LLVMType>();
unsigned vecWidth = vecTy.getVectorNumElements();
Location loc = op->getLoc();
// The backend result vector scalarization have trouble scalarize
// <1 x ty> result, exclude the x1 width from the lowering.
if (vecWidth != 2 && vecWidth != 4)
return failure();
// Obtain dataPtr and elementType from the memref.
MemRefType memRefType = xferOp.getMemRefType();
// MUBUF instruction operate only on addresspace 0(unified) or 1(global)
// In case of 3(LDS): fall back to vector->llvm pass
// In case of 5(VGPR): wrong
if ((memRefType.getMemorySpace() != 0) &&
(memRefType.getMemorySpace() != 1))
return failure();
// Note that the dataPtr starts at the offset address specified by
// indices, so no need to calculat offset size in bytes again in
// the MUBUF instruction.
Value dataPtr = getDataPtr(loc, memRefType, adaptor.memref(),
adaptor.indices(), rewriter, getModule());
// 1. Create and fill a <4 x i32> dwordConfig with:
// 1st two elements holding the address of dataPtr.
// 3rd element: -1.
// 4th element: 0x27000.
SmallVector<int32_t, 4> constConfigAttr{0, 0, -1, 0x27000};
Type i32Ty = rewriter.getIntegerType(32);
VectorType i32Vecx4 = VectorType::get(4, i32Ty);
Value constConfig = rewriter.create<LLVM::ConstantOp>(
loc, toLLVMTy(i32Vecx4),
DenseElementsAttr::get(i32Vecx4, ArrayRef<int32_t>(constConfigAttr)));
// Treat first two element of <4 x i32> as i64, and save the dataPtr
// to it.
Type i64Ty = rewriter.getIntegerType(64);
Value i64x2Ty = rewriter.create<LLVM::BitcastOp>(
loc,
LLVM::LLVMType::getVectorTy(
toLLVMTy(i64Ty).template cast<LLVM::LLVMType>(), 2),
constConfig);
Value dataPtrAsI64 = rewriter.create<LLVM::PtrToIntOp>(
loc, toLLVMTy(i64Ty).template cast<LLVM::LLVMType>(), dataPtr);
Value zero = createIndexConstant(rewriter, loc, 0);
Value dwordConfig = rewriter.create<LLVM::InsertElementOp>(
loc,
LLVM::LLVMType::getVectorTy(
toLLVMTy(i64Ty).template cast<LLVM::LLVMType>(), 2),
i64x2Ty, dataPtrAsI64, zero);
dwordConfig =
rewriter.create<LLVM::BitcastOp>(loc, toLLVMTy(i32Vecx4), dwordConfig);
// 2. Rewrite op as a buffer read or write.
Value int1False = rewriter.create<LLVM::ConstantOp>(
loc, toLLVMTy(rewriter.getIntegerType(1)),
rewriter.getIntegerAttr(rewriter.getIntegerType(1), 0));
Value int32Zero = rewriter.create<LLVM::ConstantOp>(
loc, toLLVMTy(i32Ty),
rewriter.getIntegerAttr(rewriter.getIntegerType(32), 0));
return replaceTransferOpWithMubuf(rewriter, operands, typeConverter, loc,
xferOp, vecTy, dwordConfig, int32Zero,
int32Zero, int1False, int1False);
}
};
} // end anonymous namespace
void mlir::populateVectorToROCDLConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.insert<VectorTransferConversion<TransferReadOp>,
VectorTransferConversion<TransferWriteOp>>(ctx, converter);
}
namespace {
struct LowerVectorToROCDLPass
: public ConvertVectorToROCDLBase<LowerVectorToROCDLPass> {
void runOnOperation() override;
};
} // namespace
void LowerVectorToROCDLPass::runOnOperation() {
LLVMTypeConverter converter(&getContext());
OwningRewritePatternList patterns;
populateVectorToROCDLConversionPatterns(converter, patterns);
populateStdToLLVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
target.addLegalDialect<ROCDL::ROCDLDialect>();
if (failed(applyPartialConversion(getOperation(), target, patterns)))
signalPassFailure();
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertVectorToROCDLPass() {
return std::make_unique<LowerVectorToROCDLPass>();
}