Files
clang-p2996/flang/lib/Decimal/binary-to-decimal.cpp
peter klausler 4876520eef [flang] runtime: For Fw.d formatting, don't oscillate forever
The algorithm for Fw.d output will drive binary to decimal conversion for
an initial fixed number of digits, then adjust that number based on the
result's exposent.  For value close to a power of ten, this adjustment
process wouldn't terminate; e.g., formatting 9.999 as F10.2 would start
with 1e2, boost the digits to 2, get 9.99e1, decrease the digits, and loop.
Solve by refusing to boost the digits a second time.

Differential Revision: https://reviews.llvm.org/D107490
2021-08-04 12:19:23 -07:00

387 lines
12 KiB
C++

//===-- lib/Decimal/binary-to-decimal.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "big-radix-floating-point.h"
#include "flang/Decimal/decimal.h"
#include <cassert>
#include <string>
namespace Fortran::decimal {
template <int PREC, int LOG10RADIX>
BigRadixFloatingPointNumber<PREC, LOG10RADIX>::BigRadixFloatingPointNumber(
BinaryFloatingPointNumber<PREC> x, enum FortranRounding rounding)
: rounding_{rounding} {
bool negative{x.IsNegative()};
if (x.IsZero()) {
isNegative_ = negative;
return;
}
if (negative) {
x.Negate();
}
int twoPow{x.UnbiasedExponent()};
twoPow -= x.bits - 1;
if (!x.isImplicitMSB) {
++twoPow;
}
int lshift{x.exponentBits};
if (twoPow <= -lshift) {
twoPow += lshift;
lshift = 0;
} else if (twoPow < 0) {
lshift += twoPow;
twoPow = 0;
}
auto word{x.Fraction()};
word <<= lshift;
SetTo(word);
isNegative_ = negative;
// The significand is now encoded in *this as an integer (D) and
// decimal exponent (E): x = D * 10.**E * 2.**twoPow
// twoPow can be positive or negative.
// The goal now is to get twoPow up or down to zero, leaving us with
// only decimal digits and decimal exponent. This is done by
// fast multiplications and divisions of D by 2 and 5.
// (5*D) * 10.**E * 2.**twoPow -> D * 10.**(E+1) * 2.**(twoPow-1)
for (; twoPow > 0 && IsDivisibleBy<5>(); --twoPow) {
DivideBy<5>();
++exponent_;
}
int overflow{0};
for (; twoPow >= 9; twoPow -= 9) {
// D * 10.**E * 2.**twoPow -> (D*(2**9)) * 10.**E * 2.**(twoPow-9)
overflow |= MultiplyBy<512>();
}
for (; twoPow >= 3; twoPow -= 3) {
// D * 10.**E * 2.**twoPow -> (D*(2**3)) * 10.**E * 2.**(twoPow-3)
overflow |= MultiplyBy<8>();
}
for (; twoPow > 0; --twoPow) {
// D * 10.**E * 2.**twoPow -> (2*D) * 10.**E * 2.**(twoPow-1)
overflow |= MultiplyBy<2>();
}
overflow |= DivideByPowerOfTwoInPlace(-twoPow);
assert(overflow == 0);
Normalize();
}
template <int PREC, int LOG10RADIX>
ConversionToDecimalResult
BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToDecimal(char *buffer,
std::size_t n, enum DecimalConversionFlags flags, int maxDigits) const {
if (n < static_cast<std::size_t>(3 + digits_ * LOG10RADIX)) {
return {nullptr, 0, 0, Overflow};
}
char *start{buffer};
if (isNegative_) {
*start++ = '-';
} else if (flags & AlwaysSign) {
*start++ = '+';
}
if (IsZero()) {
*start++ = '0';
*start = '\0';
return {buffer, static_cast<std::size_t>(start - buffer), 0, Exact};
}
char *p{start};
static_assert((LOG10RADIX % 2) == 0, "radix not a power of 100");
static const char lut[] = "0001020304050607080910111213141516171819"
"2021222324252627282930313233343536373839"
"4041424344454647484950515253545556575859"
"6061626364656667686970717273747576777879"
"8081828384858687888990919293949596979899";
// Treat the MSD specially: don't emit leading zeroes.
Digit dig{digit_[digits_ - 1]};
char stack[LOG10RADIX], *sp{stack};
for (int k{0}; k < log10Radix; k += 2) {
Digit newDig{dig / 100};
auto d{static_cast<std::uint32_t>(dig) -
std::uint32_t{100} * static_cast<std::uint32_t>(newDig)};
dig = newDig;
const char *q{lut + d + d};
*sp++ = q[1];
*sp++ = q[0];
}
while (sp > stack && sp[-1] == '0') {
--sp;
}
while (sp > stack) {
*p++ = *--sp;
}
for (int j{digits_ - 1}; j-- > 0;) {
Digit dig{digit_[j]};
char *reverse{p += log10Radix};
for (int k{0}; k < log10Radix; k += 2) {
Digit newDig{dig / 100};
auto d{static_cast<std::uint32_t>(dig) -
std::uint32_t{100} * static_cast<std::uint32_t>(newDig)};
dig = newDig;
const char *q{lut + d + d};
*--reverse = q[1];
*--reverse = q[0];
}
}
// Adjust exponent so the effective decimal point is to
// the left of the first digit.
int expo = exponent_ + p - start;
// Trim trailing zeroes.
while (p[-1] == '0') {
--p;
}
char *end{start + maxDigits};
if (maxDigits == 0) {
p = end;
}
if (p <= end) {
*p = '\0';
return {buffer, static_cast<std::size_t>(p - buffer), expo, Exact};
} else {
// Apply a digit limit, possibly with rounding.
bool incr{false};
switch (rounding_) {
case RoundNearest:
incr = *end > '5' ||
(*end == '5' && (p > end + 1 || ((end[-1] - '0') & 1) != 0));
break;
case RoundUp:
incr = !isNegative_;
break;
case RoundDown:
incr = isNegative_;
break;
case RoundToZero:
break;
case RoundCompatible:
incr = *end >= '5';
break;
}
p = end;
if (incr) {
while (p > start && p[-1] == '9') {
--p;
}
if (p == start) {
*p++ = '1';
++expo;
} else {
++p[-1];
}
}
*p = '\0';
return {buffer, static_cast<std::size_t>(p - buffer), expo, Inexact};
}
}
template <int PREC, int LOG10RADIX>
bool BigRadixFloatingPointNumber<PREC, LOG10RADIX>::Mean(
const BigRadixFloatingPointNumber &that) {
while (digits_ < that.digits_) {
digit_[digits_++] = 0;
}
int carry{0};
for (int j{0}; j < that.digits_; ++j) {
Digit v{digit_[j] + that.digit_[j] + carry};
if (v >= radix) {
digit_[j] = v - radix;
carry = 1;
} else {
digit_[j] = v;
carry = 0;
}
}
if (carry != 0) {
AddCarry(that.digits_, carry);
}
return DivideBy<2>() != 0;
}
template <int PREC, int LOG10RADIX>
void BigRadixFloatingPointNumber<PREC, LOG10RADIX>::Minimize(
BigRadixFloatingPointNumber &&less, BigRadixFloatingPointNumber &&more) {
int leastExponent{exponent_};
if (less.exponent_ < leastExponent) {
leastExponent = less.exponent_;
}
if (more.exponent_ < leastExponent) {
leastExponent = more.exponent_;
}
while (exponent_ > leastExponent) {
--exponent_;
MultiplyBy<10>();
}
while (less.exponent_ > leastExponent) {
--less.exponent_;
less.MultiplyBy<10>();
}
while (more.exponent_ > leastExponent) {
--more.exponent_;
more.MultiplyBy<10>();
}
if (less.Mean(*this)) {
less.AddCarry(); // round up
}
if (!more.Mean(*this)) {
more.Decrement(); // round down
}
while (less.digits_ < more.digits_) {
less.digit_[less.digits_++] = 0;
}
while (more.digits_ < less.digits_) {
more.digit_[more.digits_++] = 0;
}
int digits{more.digits_};
int same{0};
while (same < digits &&
less.digit_[digits - 1 - same] == more.digit_[digits - 1 - same]) {
++same;
}
if (same == digits) {
return;
}
digits_ = same + 1;
int offset{digits - digits_};
exponent_ += offset * log10Radix;
for (int j{0}; j < digits_; ++j) {
digit_[j] = more.digit_[j + offset];
}
Digit least{less.digit_[offset]};
Digit my{digit_[0]};
while (true) {
Digit q{my / 10u};
Digit r{my - 10 * q};
Digit lq{least / 10u};
Digit lr{least - 10 * lq};
if (r != 0 && lq == q) {
Digit sub{(r - lr) >> 1};
digit_[0] -= sub;
break;
} else {
least = lq;
my = q;
DivideBy<10>();
++exponent_;
}
}
Normalize();
}
template <int PREC>
ConversionToDecimalResult ConvertToDecimal(char *buffer, std::size_t size,
enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, BinaryFloatingPointNumber<PREC> x) {
if (x.IsNaN()) {
return {"NaN", 3, 0, Invalid};
} else if (x.IsInfinite()) {
if (x.IsNegative()) {
return {"-Inf", 4, 0, Exact};
} else if (flags & AlwaysSign) {
return {"+Inf", 4, 0, Exact};
} else {
return {"Inf", 3, 0, Exact};
}
} else {
using Big = BigRadixFloatingPointNumber<PREC>;
Big number{x, rounding};
if ((flags & Minimize) && !x.IsZero()) {
// To emit the fewest decimal digits necessary to represent the value
// in such a way that decimal-to-binary conversion to the same format
// with a fixed assumption about rounding will return the same binary
// value, we also perform binary-to-decimal conversion on the two
// binary values immediately adjacent to this one, use them to identify
// the bounds of the range of decimal values that will map back to the
// original binary value, and find a (not necessary unique) shortest
// decimal sequence in that range.
using Binary = typename Big::Real;
Binary less{x};
less.Previous();
Binary more{x};
if (!x.IsMaximalFiniteMagnitude()) {
more.Next();
}
number.Minimize(Big{less, rounding}, Big{more, rounding});
}
return number.ConvertToDecimal(buffer, size, flags, digits);
}
}
template ConversionToDecimalResult ConvertToDecimal<8>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<8>);
template ConversionToDecimalResult ConvertToDecimal<11>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<11>);
template ConversionToDecimalResult ConvertToDecimal<24>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<24>);
template ConversionToDecimalResult ConvertToDecimal<53>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<53>);
template ConversionToDecimalResult ConvertToDecimal<64>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<64>);
template ConversionToDecimalResult ConvertToDecimal<113>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<113>);
extern "C" {
ConversionToDecimalResult ConvertFloatToDecimal(char *buffer, std::size_t size,
enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, float x) {
return Fortran::decimal::ConvertToDecimal(buffer, size, flags, digits,
rounding, Fortran::decimal::BinaryFloatingPointNumber<24>(x));
}
ConversionToDecimalResult ConvertDoubleToDecimal(char *buffer, std::size_t size,
enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, double x) {
return Fortran::decimal::ConvertToDecimal(buffer, size, flags, digits,
rounding, Fortran::decimal::BinaryFloatingPointNumber<53>(x));
}
#if LONG_DOUBLE == 80
ConversionToDecimalResult ConvertLongDoubleToDecimal(char *buffer,
std::size_t size, enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, long double x) {
return Fortran::decimal::ConvertToDecimal(buffer, size, flags, digits,
rounding, Fortran::decimal::BinaryFloatingPointNumber<64>(x));
}
#elif LONG_DOUBLE == 128
ConversionToDecimalResult ConvertLongDoubleToDecimal(char *buffer,
std::size_t size, enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, long double x) {
return Fortran::decimal::ConvertToDecimal(buffer, size, flags, digits,
rounding, Fortran::decimal::BinaryFloatingPointNumber<113>(x));
}
#endif
}
template <int PREC, int LOG10RADIX>
template <typename STREAM>
STREAM &BigRadixFloatingPointNumber<PREC, LOG10RADIX>::Dump(STREAM &o) const {
if (isNegative_) {
o << '-';
}
o << "10**(" << exponent_ << ") * ...\n";
for (int j{digits_}; --j >= 0;) {
std::string str{std::to_string(digit_[j])};
o << std::string(20 - str.size(), ' ') << str << " [" << j << ']';
if (j + 1 == digitLimit_) {
o << " (limit)";
}
o << '\n';
}
return o;
}
} // namespace Fortran::decimal