Files
clang-p2996/flang/runtime/pointer.cpp
peter klausler a48e41683a [flang] Run-time derived type initialization and destruction
Use derived type information tables to drive default component
initialization (when needed), component destruction, and calls to
final subroutines.  Perform these operations automatically for
ALLOCATE()/DEALLOCATE() APIs for allocatables, automatics, and
pointers.  Add APIs for use in lowering to perform these operations
for non-allocatable/automatic non-pointer variables.
Data pointer component initialization supports arbitrary constant
designators, a F'2008 feature, which may be a first for Fortran
implementations.

Differential Revision: https://reviews.llvm.org/D106297
2021-07-20 15:24:16 -07:00

172 lines
5.8 KiB
C++

//===-- runtime/pointer.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "pointer.h"
#include "derived.h"
#include "stat.h"
#include "terminator.h"
#include "tools.h"
#include "type-info.h"
namespace Fortran::runtime {
extern "C" {
void RTNAME(PointerNullifyIntrinsic)(Descriptor &pointer, TypeCategory category,
int kind, int rank, int corank) {
INTERNAL_CHECK(corank == 0);
pointer.Establish(TypeCode{category, kind},
Descriptor::BytesFor(category, kind), nullptr, rank, nullptr,
CFI_attribute_pointer);
}
void RTNAME(PointerNullifyCharacter)(Descriptor &pointer, SubscriptValue length,
int kind, int rank, int corank) {
INTERNAL_CHECK(corank == 0);
pointer.Establish(
kind, length, nullptr, rank, nullptr, CFI_attribute_pointer);
}
void RTNAME(PointerNullifyDerived)(Descriptor &pointer,
const typeInfo::DerivedType &derivedType, int rank, int corank) {
INTERNAL_CHECK(corank == 0);
pointer.Establish(derivedType, nullptr, rank, nullptr, CFI_attribute_pointer);
}
void RTNAME(PointerSetBounds)(Descriptor &pointer, int zeroBasedDim,
SubscriptValue lower, SubscriptValue upper) {
INTERNAL_CHECK(zeroBasedDim >= 0 && zeroBasedDim < pointer.rank());
pointer.GetDimension(zeroBasedDim).SetBounds(lower, upper);
// The byte strides are computed when the pointer is allocated.
}
// TODO: PointerSetCoBounds
void RTNAME(PointerSetDerivedLength)(
Descriptor &pointer, int which, SubscriptValue x) {
DescriptorAddendum *addendum{pointer.Addendum()};
INTERNAL_CHECK(addendum != nullptr);
addendum->SetLenParameterValue(which, x);
}
void RTNAME(PointerApplyMold)(Descriptor &pointer, const Descriptor &mold) {
pointer = mold;
pointer.set_base_addr(nullptr);
pointer.raw().attribute = CFI_attribute_pointer;
}
void RTNAME(PointerAssociateScalar)(Descriptor &pointer, void *target) {
pointer.set_base_addr(target);
}
void RTNAME(PointerAssociate)(Descriptor &pointer, const Descriptor &target) {
pointer = target;
pointer.raw().attribute = CFI_attribute_pointer;
}
void RTNAME(PointerAssociateLowerBounds)(Descriptor &pointer,
const Descriptor &target, const Descriptor &lowerBounds) {
pointer = target;
pointer.raw().attribute = CFI_attribute_pointer;
int rank{pointer.rank()};
Terminator terminator{__FILE__, __LINE__};
std::size_t boundElementBytes{lowerBounds.ElementBytes()};
for (int j{0}; j < rank; ++j) {
pointer.GetDimension(j).SetLowerBound(
GetInt64(lowerBounds.ZeroBasedIndexedElement<const char>(j),
boundElementBytes, terminator));
}
}
void RTNAME(PointerAssociateRemapping)(Descriptor &pointer,
const Descriptor &target, const Descriptor &bounds, const char *sourceFile,
int sourceLine) {
pointer = target;
pointer.raw().attribute = CFI_attribute_pointer;
int rank{pointer.rank()};
Terminator terminator{sourceFile, sourceLine};
SubscriptValue byteStride{/*captured from first dimension*/};
std::size_t boundElementBytes{bounds.ElementBytes()};
for (int j{0}; j < rank; ++j) {
auto &dim{pointer.GetDimension(j)};
dim.SetBounds(GetInt64(bounds.ZeroBasedIndexedElement<const char>(2 * j),
boundElementBytes, terminator),
GetInt64(bounds.ZeroBasedIndexedElement<const char>(2 * j + 1),
boundElementBytes, terminator));
if (j == 0) {
byteStride = dim.ByteStride();
} else {
dim.SetByteStride(byteStride);
byteStride *= dim.Extent();
}
}
if (pointer.Elements() > target.Elements()) {
terminator.Crash("PointerAssociateRemapping: too many elements in remapped "
"pointer (%zd > %zd)",
pointer.Elements(), target.Elements());
}
}
int RTNAME(PointerAllocate)(Descriptor &pointer, bool hasStat,
const Descriptor *errMsg, const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
if (!pointer.IsPointer()) {
return ReturnError(terminator, StatInvalidDescriptor, errMsg, hasStat);
}
int stat{ReturnError(terminator, pointer.Allocate(), errMsg, hasStat)};
if (stat == StatOk) {
if (const DescriptorAddendum * addendum{pointer.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noInitializationNeeded()) {
stat = Initialize(pointer, *derived, terminator, hasStat, errMsg);
}
}
}
}
return stat;
}
int RTNAME(PointerDeallocate)(Descriptor &pointer, bool hasStat,
const Descriptor *errMsg, const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
if (!pointer.IsPointer()) {
return ReturnError(terminator, StatInvalidDescriptor, errMsg, hasStat);
}
if (!pointer.IsAllocated()) {
return ReturnError(terminator, StatBaseNull, errMsg, hasStat);
}
return ReturnError(terminator, pointer.Destroy(true), errMsg, hasStat);
}
bool RTNAME(PointerIsAssociated)(const Descriptor &pointer) {
return pointer.raw().base_addr != nullptr;
}
bool RTNAME(PointerIsAssociatedWith)(
const Descriptor &pointer, const Descriptor &target) {
int rank{pointer.rank()};
if (pointer.raw().base_addr != target.raw().base_addr ||
pointer.ElementBytes() != target.ElementBytes() ||
rank != target.rank()) {
return false;
}
for (int j{0}; j < rank; ++j) {
const Dimension &pDim{pointer.GetDimension(j)};
const Dimension &tDim{target.GetDimension(j)};
if (pDim.Extent() != tDim.Extent() ||
pDim.ByteStride() != tDim.ByteStride()) {
return false;
}
}
return true;
}
// TODO: PointerCheckLengthParameter, PointerAllocateSource
} // extern "C"
} // namespace Fortran::runtime