Files
clang-p2996/lld/ELF/Arch/X86.cpp
Alex Richardson 35c5e564e6 [ELF] Check the Elf_Rel addends for dynamic relocations
There used to be many cases where addends for Elf_Rel were not emitted in
the final object file (mostly when building for MIPS64 since the input .o
files use RELA but the output uses REL). These cases have been fixed since,
but this patch adds a check to ensure that the written values are correct.
It is based on a previous patch that I added to the CHERI fork of LLD since
we were using MIPS64 as a baseline. The work has now almost entirely
shifted to RISC-V and Arm Morello (which use Elf_Rela), but I thought
it would be useful to upstream our local changes anyway.

This patch adds a (hidden) command line flag --check-dynamic-relocations
that can be used to enable these checks. It is also on by default in
assertions builds for targets that handle all dynamic relocations kinds
that LLD can emit in Target::getImplicitAddend(). Currently this is
enabled for ARM, MIPS, and I386.

Reviewed By: MaskRay

Differential Revision: https://reviews.llvm.org/D101450
2021-07-09 10:41:40 +01:00

653 lines
22 KiB
C++

//===- X86.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class X86 : public TargetInfo {
public:
X86();
int getTlsGdRelaxSkip(RelType type) const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
void writeGotPltHeader(uint8_t *buf) const override;
RelType getDynRel(RelType type) const override;
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
};
} // namespace
X86::X86() {
copyRel = R_386_COPY;
gotRel = R_386_GLOB_DAT;
noneRel = R_386_NONE;
pltRel = R_386_JUMP_SLOT;
iRelativeRel = R_386_IRELATIVE;
relativeRel = R_386_RELATIVE;
symbolicRel = R_386_32;
tlsGotRel = R_386_TLS_TPOFF;
tlsModuleIndexRel = R_386_TLS_DTPMOD32;
tlsOffsetRel = R_386_TLS_DTPOFF32;
pltHeaderSize = 16;
pltEntrySize = 16;
ipltEntrySize = 16;
trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
// Align to the non-PAE large page size (known as a superpage or huge page).
// FreeBSD automatically promotes large, superpage-aligned allocations.
defaultImageBase = 0x400000;
}
int X86::getTlsGdRelaxSkip(RelType type) const {
return 2;
}
RelExpr X86::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
// There are 4 different TLS variable models with varying degrees of
// flexibility and performance. LocalExec and InitialExec models are fast but
// less-flexible models. If they are in use, we set DF_STATIC_TLS flag in the
// dynamic section to let runtime know about that.
if (type == R_386_TLS_LE || type == R_386_TLS_LE_32 || type == R_386_TLS_IE ||
type == R_386_TLS_GOTIE)
config->hasStaticTlsModel = true;
switch (type) {
case R_386_8:
case R_386_16:
case R_386_32:
return R_ABS;
case R_386_TLS_LDO_32:
return R_DTPREL;
case R_386_TLS_GD:
return R_TLSGD_GOTPLT;
case R_386_TLS_LDM:
return R_TLSLD_GOTPLT;
case R_386_PLT32:
return R_PLT_PC;
case R_386_PC8:
case R_386_PC16:
case R_386_PC32:
return R_PC;
case R_386_GOTPC:
return R_GOTPLTONLY_PC;
case R_386_TLS_IE:
return R_GOT;
case R_386_GOT32:
case R_386_GOT32X:
// These relocations are arguably mis-designed because their calculations
// depend on the instructions they are applied to. This is bad because we
// usually don't care about whether the target section contains valid
// machine instructions or not. But this is part of the documented ABI, so
// we had to implement as the standard requires.
//
// x86 does not support PC-relative data access. Therefore, in order to
// access GOT contents, a GOT address needs to be known at link-time
// (which means non-PIC) or compilers have to emit code to get a GOT
// address at runtime (which means code is position-independent but
// compilers need to emit extra code for each GOT access.) This decision
// is made at compile-time. In the latter case, compilers emit code to
// load a GOT address to a register, which is usually %ebx.
//
// So, there are two ways to refer to symbol foo's GOT entry: foo@GOT or
// foo@GOT(%ebx).
//
// foo@GOT is not usable in PIC. If we are creating a PIC output and if we
// find such relocation, we should report an error. foo@GOT is resolved to
// an *absolute* address of foo's GOT entry, because both GOT address and
// foo's offset are known. In other words, it's G + A.
//
// foo@GOT(%ebx) needs to be resolved to a *relative* offset from a GOT to
// foo's GOT entry in the table, because GOT address is not known but foo's
// offset in the table is known. It's G + A - GOT.
//
// It's unfortunate that compilers emit the same relocation for these
// different use cases. In order to distinguish them, we have to read a
// machine instruction.
//
// The following code implements it. We assume that Loc[0] is the first byte
// of a displacement or an immediate field of a valid machine
// instruction. That means a ModRM byte is at Loc[-1]. By taking a look at
// the byte, we can determine whether the instruction uses the operand as an
// absolute address (R_GOT) or a register-relative address (R_GOTPLT).
return (loc[-1] & 0xc7) == 0x5 ? R_GOT : R_GOTPLT;
case R_386_TLS_GOTIE:
return R_GOTPLT;
case R_386_GOTOFF:
return R_GOTPLTREL;
case R_386_TLS_LE:
return R_TPREL;
case R_386_TLS_LE_32:
return R_TPREL_NEG;
case R_386_NONE:
return R_NONE;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
RelExpr X86::adjustTlsExpr(RelType type, RelExpr expr) const {
switch (expr) {
default:
return expr;
case R_RELAX_TLS_GD_TO_IE:
return R_RELAX_TLS_GD_TO_IE_GOTPLT;
case R_RELAX_TLS_GD_TO_LE:
return R_RELAX_TLS_GD_TO_LE_NEG;
}
}
void X86::writeGotPltHeader(uint8_t *buf) const {
write32le(buf, mainPart->dynamic->getVA());
}
void X86::writeGotPlt(uint8_t *buf, const Symbol &s) const {
// Entries in .got.plt initially points back to the corresponding
// PLT entries with a fixed offset to skip the first instruction.
write32le(buf, s.getPltVA() + 6);
}
void X86::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
// An x86 entry is the address of the ifunc resolver function.
write32le(buf, s.getVA());
}
RelType X86::getDynRel(RelType type) const {
if (type == R_386_TLS_LE)
return R_386_TLS_TPOFF;
if (type == R_386_TLS_LE_32)
return R_386_TLS_TPOFF32;
return type;
}
void X86::writePltHeader(uint8_t *buf) const {
if (config->isPic) {
const uint8_t v[] = {
0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
0x90, 0x90, 0x90, 0x90 // nop
};
memcpy(buf, v, sizeof(v));
return;
}
const uint8_t pltData[] = {
0xff, 0x35, 0, 0, 0, 0, // pushl (GOTPLT+4)
0xff, 0x25, 0, 0, 0, 0, // jmp *(GOTPLT+8)
0x90, 0x90, 0x90, 0x90, // nop
};
memcpy(buf, pltData, sizeof(pltData));
uint32_t gotPlt = in.gotPlt->getVA();
write32le(buf + 2, gotPlt + 4);
write32le(buf + 8, gotPlt + 8);
}
void X86::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
if (config->isPic) {
const uint8_t inst[] = {
0xff, 0xa3, 0, 0, 0, 0, // jmp *foo@GOT(%ebx)
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmp .PLT0@PC
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 2, sym.getGotPltVA() - in.gotPlt->getVA());
} else {
const uint8_t inst[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmp .PLT0@PC
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 2, sym.getGotPltVA());
}
write32le(buf + 7, relOff);
write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
}
int64_t X86::getImplicitAddend(const uint8_t *buf, RelType type) const {
switch (type) {
case R_386_8:
case R_386_PC8:
return SignExtend64<8>(*buf);
case R_386_16:
case R_386_PC16:
return SignExtend64<16>(read16le(buf));
case R_386_32:
case R_386_GLOB_DAT:
case R_386_GOT32:
case R_386_GOT32X:
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_IRELATIVE:
case R_386_PC32:
case R_386_PLT32:
case R_386_RELATIVE:
case R_386_TLS_DTPMOD32:
case R_386_TLS_DTPOFF32:
case R_386_TLS_LDO_32:
case R_386_TLS_LDM:
case R_386_TLS_IE:
case R_386_TLS_IE_32:
case R_386_TLS_LE:
case R_386_TLS_LE_32:
case R_386_TLS_GD:
case R_386_TLS_GD_32:
case R_386_TLS_GOTIE:
case R_386_TLS_TPOFF:
case R_386_TLS_TPOFF32:
return SignExtend64<32>(read32le(buf));
case R_386_NONE:
case R_386_JUMP_SLOT:
// These relocations are defined as not having an implicit addend.
return 0;
default:
internalLinkerError(getErrorLocation(buf),
"cannot read addend for relocation " + toString(type));
return 0;
}
}
void X86::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
switch (rel.type) {
case R_386_8:
// R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
// being used for some 16-bit programs such as boot loaders, so
// we want to support them.
checkIntUInt(loc, val, 8, rel);
*loc = val;
break;
case R_386_PC8:
checkInt(loc, val, 8, rel);
*loc = val;
break;
case R_386_16:
checkIntUInt(loc, val, 16, rel);
write16le(loc, val);
break;
case R_386_PC16:
// R_386_PC16 is normally used with 16 bit code. In that situation
// the PC is 16 bits, just like the addend. This means that it can
// point from any 16 bit address to any other if the possibility
// of wrapping is included.
// The only restriction we have to check then is that the destination
// address fits in 16 bits. That is impossible to do here. The problem is
// that we are passed the final value, which already had the
// current location subtracted from it.
// We just check that Val fits in 17 bits. This misses some cases, but
// should have no false positives.
checkInt(loc, val, 17, rel);
write16le(loc, val);
break;
case R_386_32:
case R_386_GOT32:
case R_386_GOT32X:
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_PC32:
case R_386_PLT32:
case R_386_RELATIVE:
case R_386_TLS_DTPMOD32:
case R_386_TLS_DTPOFF32:
case R_386_TLS_GD:
case R_386_TLS_GOTIE:
case R_386_TLS_IE:
case R_386_TLS_LDM:
case R_386_TLS_LDO_32:
case R_386_TLS_LE:
case R_386_TLS_LE_32:
case R_386_TLS_TPOFF:
case R_386_TLS_TPOFF32:
checkInt(loc, val, 32, rel);
write32le(loc, val);
break;
default:
llvm_unreachable("unknown relocation");
}
}
void X86::relaxTlsGdToLe(uint8_t *loc, const Relocation &, uint64_t val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0,%eax
// subl $x@ntpoff,%eax
const uint8_t inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x81, 0xe8, 0, 0, 0, 0, // subl Val(%ebx), %eax
};
memcpy(loc - 3, inst, sizeof(inst));
write32le(loc + 5, val);
}
void X86::relaxTlsGdToIe(uint8_t *loc, const Relocation &, uint64_t val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0, %eax
// addl x@gotntpoff(%ebx), %eax
const uint8_t inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x03, 0x83, 0, 0, 0, 0, // addl Val(%ebx), %eax
};
memcpy(loc - 3, inst, sizeof(inst));
write32le(loc + 5, val);
}
// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
void X86::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
// Ulrich's document section 6.2 says that @gotntpoff can
// be used with MOVL or ADDL instructions.
// @indntpoff is similar to @gotntpoff, but for use in
// position dependent code.
uint8_t reg = (loc[-1] >> 3) & 7;
if (rel.type == R_386_TLS_IE) {
if (loc[-1] == 0xa1) {
// "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
// This case is different from the generic case below because
// this is a 5 byte instruction while below is 6 bytes.
loc[-1] = 0xb8;
} else if (loc[-2] == 0x8b) {
// "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
loc[-2] = 0xc7;
loc[-1] = 0xc0 | reg;
} else {
// "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
loc[-2] = 0x81;
loc[-1] = 0xc0 | reg;
}
} else {
assert(rel.type == R_386_TLS_GOTIE);
if (loc[-2] == 0x8b) {
// "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
loc[-2] = 0xc7;
loc[-1] = 0xc0 | reg;
} else {
// "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
loc[-2] = 0x8d;
loc[-1] = 0x80 | (reg << 3) | reg;
}
}
write32le(loc, val);
}
void X86::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
if (rel.type == R_386_TLS_LDO_32) {
write32le(loc, val);
return;
}
// Convert
// leal foo(%reg),%eax
// call ___tls_get_addr
// to
// movl %gs:0,%eax
// nop
// leal 0(%esi,1),%esi
const uint8_t inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
0x90, // nop
0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
};
memcpy(loc - 2, inst, sizeof(inst));
}
// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
// entries containing endbr32 instructions. A PLT entry will be split into two
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
namespace {
class IntelIBT : public X86 {
public:
IntelIBT();
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
static const unsigned IBTPltHeaderSize = 16;
};
} // namespace
IntelIBT::IntelIBT() { pltHeaderSize = 0; }
void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
uint64_t va =
in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
write32le(buf, va);
}
void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t /*pltEntryAddr*/) const {
if (config->isPic) {
const uint8_t inst[] = {
0xf3, 0x0f, 0x1e, 0xfb, // endbr32
0xff, 0xa3, 0, 0, 0, 0, // jmp *name@GOT(%ebx)
0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 6, sym.getGotPltVA() - in.gotPlt->getVA());
return;
}
const uint8_t inst[] = {
0xf3, 0x0f, 0x1e, 0xfb, // endbr32
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 6, sym.getGotPltVA());
}
void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
writePltHeader(buf);
buf += IBTPltHeaderSize;
const uint8_t inst[] = {
0xf3, 0x0f, 0x1e, 0xfb, // endbr32
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmpq .PLT0@PC
0x66, 0x90, // nop
};
for (size_t i = 0; i < numEntries; ++i) {
memcpy(buf, inst, sizeof(inst));
write32le(buf + 5, i * sizeof(object::ELF32LE::Rel));
write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
buf += sizeof(inst);
}
}
namespace {
class RetpolinePic : public X86 {
public:
RetpolinePic();
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
};
class RetpolineNoPic : public X86 {
public:
RetpolineNoPic();
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
};
} // namespace
RetpolinePic::RetpolinePic() {
pltHeaderSize = 48;
pltEntrySize = 32;
ipltEntrySize = 32;
}
void RetpolinePic::writeGotPlt(uint8_t *buf, const Symbol &s) const {
write32le(buf, s.getPltVA() + 17);
}
void RetpolinePic::writePltHeader(uint8_t *buf) const {
const uint8_t insn[] = {
0xff, 0xb3, 4, 0, 0, 0, // 0: pushl 4(%ebx)
0x50, // 6: pushl %eax
0x8b, 0x83, 8, 0, 0, 0, // 7: mov 8(%ebx), %eax
0xe8, 0x0e, 0x00, 0x00, 0x00, // d: call next
0xf3, 0x90, // 12: loop: pause
0x0f, 0xae, 0xe8, // 14: lfence
0xeb, 0xf9, // 17: jmp loop
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
0x89, 0xc8, // 2b: mov %ecx, %eax
0x59, // 2d: pop %ecx
0xc3, // 2e: ret
0xcc, // 2f: int3; padding
};
memcpy(buf, insn, sizeof(insn));
}
void RetpolinePic::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
const uint8_t insn[] = {
0x50, // pushl %eax
0x8b, 0x83, 0, 0, 0, 0, // mov foo@GOT(%ebx), %eax
0xe8, 0, 0, 0, 0, // call plt+0x20
0xe9, 0, 0, 0, 0, // jmp plt+0x12
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmp plt+0
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
};
memcpy(buf, insn, sizeof(insn));
uint32_t ebx = in.gotPlt->getVA();
unsigned off = pltEntryAddr - in.plt->getVA();
write32le(buf + 3, sym.getGotPltVA() - ebx);
write32le(buf + 8, -off - 12 + 32);
write32le(buf + 13, -off - 17 + 18);
write32le(buf + 18, relOff);
write32le(buf + 23, -off - 27);
}
RetpolineNoPic::RetpolineNoPic() {
pltHeaderSize = 48;
pltEntrySize = 32;
ipltEntrySize = 32;
}
void RetpolineNoPic::writeGotPlt(uint8_t *buf, const Symbol &s) const {
write32le(buf, s.getPltVA() + 16);
}
void RetpolineNoPic::writePltHeader(uint8_t *buf) const {
const uint8_t insn[] = {
0xff, 0x35, 0, 0, 0, 0, // 0: pushl GOTPLT+4
0x50, // 6: pushl %eax
0xa1, 0, 0, 0, 0, // 7: mov GOTPLT+8, %eax
0xe8, 0x0f, 0x00, 0x00, 0x00, // c: call next
0xf3, 0x90, // 11: loop: pause
0x0f, 0xae, 0xe8, // 13: lfence
0xeb, 0xf9, // 16: jmp loop
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 18: int3
0xcc, 0xcc, 0xcc, // 1f: int3; .align 16
0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
0x89, 0xc8, // 2b: mov %ecx, %eax
0x59, // 2d: pop %ecx
0xc3, // 2e: ret
0xcc, // 2f: int3; padding
};
memcpy(buf, insn, sizeof(insn));
uint32_t gotPlt = in.gotPlt->getVA();
write32le(buf + 2, gotPlt + 4);
write32le(buf + 8, gotPlt + 8);
}
void RetpolineNoPic::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
const uint8_t insn[] = {
0x50, // 0: pushl %eax
0xa1, 0, 0, 0, 0, // 1: mov foo_in_GOT, %eax
0xe8, 0, 0, 0, 0, // 6: call plt+0x20
0xe9, 0, 0, 0, 0, // b: jmp plt+0x11
0x68, 0, 0, 0, 0, // 10: pushl $reloc_offset
0xe9, 0, 0, 0, 0, // 15: jmp plt+0
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
0xcc, // 1f: int3; padding
};
memcpy(buf, insn, sizeof(insn));
unsigned off = pltEntryAddr - in.plt->getVA();
write32le(buf + 2, sym.getGotPltVA());
write32le(buf + 7, -off - 11 + 32);
write32le(buf + 12, -off - 16 + 17);
write32le(buf + 17, relOff);
write32le(buf + 22, -off - 26);
}
TargetInfo *elf::getX86TargetInfo() {
if (config->zRetpolineplt) {
if (config->isPic) {
static RetpolinePic t;
return &t;
}
static RetpolineNoPic t;
return &t;
}
if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
static IntelIBT t;
return &t;
}
static X86 t;
return &t;
}