Files
clang-p2996/mlir/lib/Conversion/PDLToPDLInterp/PredicateTree.h
River Riddle 3a833a0e0e [mlir][PDL] Add support for variadic operands and results in the PDL Interpreter
This revision extends the PDL Interpreter dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl_interp.check_types : Compare a range of types with a known range.
* pdl_interp.create_types : Create a constant range of types.
* pdl_interp.get_operands : Get a range of operands from an operation.
* pdl_interp.get_results : Get a range of results from an operation.
* pdl_interp.switch_types : Switch on a range of types.

This revision handles adding support in the interpreter dialect and the conversion from PDL to PDLInterp. Support for variadic operands and results in the bytecode will be added in a followup revision.

Differential Revision: https://reviews.llvm.org/D95722
2021-03-16 13:20:19 -07:00

209 lines
7.4 KiB
C++

//===- PredicateTree.h - Predicate tree node definitions --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions for nodes of a tree structure for representing
// the general control flow within a pattern match.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_LIB_CONVERSION_PDLTOPDLINTERP_PREDICATETREE_H_
#define MLIR_LIB_CONVERSION_PDLTOPDLINTERP_PREDICATETREE_H_
#include "Predicate.h"
#include "mlir/Dialect/PDL/IR/PDLOps.h"
#include "llvm/ADT/MapVector.h"
namespace mlir {
class ModuleOp;
namespace pdl_to_pdl_interp {
class MatcherNode;
/// A PositionalPredicate is a predicate that is associated with a specific
/// positional value.
struct PositionalPredicate {
PositionalPredicate(Position *pos,
const PredicateBuilder::Predicate &predicate)
: position(pos), question(predicate.first), answer(predicate.second) {}
/// The position the predicate is applied to.
Position *position;
/// The question that the predicate applies.
Qualifier *question;
/// The expected answer of the predicate.
Qualifier *answer;
};
//===----------------------------------------------------------------------===//
// MatcherNode
//===----------------------------------------------------------------------===//
/// This class represents the base of a predicate matcher node.
class MatcherNode {
public:
virtual ~MatcherNode() = default;
/// Given a module containing PDL pattern operations, generate a matcher tree
/// using the patterns within the given module and return the root matcher
/// node. `valueToPosition` is a map that is populated with the original
/// pdl values and their corresponding positions in the matcher tree.
static std::unique_ptr<MatcherNode>
generateMatcherTree(ModuleOp module, PredicateBuilder &builder,
DenseMap<Value, Position *> &valueToPosition);
/// Returns the position on which the question predicate should be checked.
Position *getPosition() const { return position; }
/// Returns the predicate checked on this node.
Qualifier *getQuestion() const { return question; }
/// Returns the node that should be visited if this, or a subsequent node
/// fails.
std::unique_ptr<MatcherNode> &getFailureNode() { return failureNode; }
/// Sets the node that should be visited if this, or a subsequent node fails.
void setFailureNode(std::unique_ptr<MatcherNode> node) {
failureNode = std::move(node);
}
/// Returns the unique type ID of this matcher instance. This should not be
/// used directly, and is provided to support type casting.
TypeID getMatcherTypeID() const { return matcherTypeID; }
protected:
MatcherNode(TypeID matcherTypeID, Position *position = nullptr,
Qualifier *question = nullptr,
std::unique_ptr<MatcherNode> failureNode = nullptr);
private:
/// The position on which the predicate should be checked.
Position *position;
/// The predicate that is checked on the given position.
Qualifier *question;
/// The node to visit if this node fails.
std::unique_ptr<MatcherNode> failureNode;
/// An owning store for the failure node if it is owned by this node.
std::unique_ptr<MatcherNode> failureNodeStorage;
/// A unique identifier for the derived matcher node, used for type casting.
TypeID matcherTypeID;
};
//===----------------------------------------------------------------------===//
// BoolNode
/// A BoolNode denotes a question with a boolean-like result. These nodes branch
/// to a single node on a successful result, otherwise defaulting to the failure
/// node.
struct BoolNode : public MatcherNode {
BoolNode(Position *position, Qualifier *question, Qualifier *answer,
std::unique_ptr<MatcherNode> successNode,
std::unique_ptr<MatcherNode> failureNode = nullptr);
/// Returns if the given matcher node is an instance of this class, used to
/// support type casting.
static bool classof(const MatcherNode *node) {
return node->getMatcherTypeID() == TypeID::get<BoolNode>();
}
/// Returns the expected answer of this boolean node.
Qualifier *getAnswer() const { return answer; }
/// Returns the node that should be visited on success.
std::unique_ptr<MatcherNode> &getSuccessNode() { return successNode; }
private:
/// The expected answer of this boolean node.
Qualifier *answer;
/// The next node if this node succeeds. Otherwise, go to the failure node.
std::unique_ptr<MatcherNode> successNode;
};
//===----------------------------------------------------------------------===//
// ExitNode
/// An ExitNode is a special sentinel node that denotes the end of matcher.
struct ExitNode : public MatcherNode {
ExitNode() : MatcherNode(TypeID::get<ExitNode>()) {}
/// Returns if the given matcher node is an instance of this class, used to
/// support type casting.
static bool classof(const MatcherNode *node) {
return node->getMatcherTypeID() == TypeID::get<ExitNode>();
}
};
//===----------------------------------------------------------------------===//
// SuccessNode
/// A SuccessNode denotes that a given high level pattern has successfully been
/// matched. This does not terminate the matcher, as there may be multiple
/// successful matches.
struct SuccessNode : public MatcherNode {
explicit SuccessNode(pdl::PatternOp pattern,
std::unique_ptr<MatcherNode> failureNode);
/// Returns if the given matcher node is an instance of this class, used to
/// support type casting.
static bool classof(const MatcherNode *node) {
return node->getMatcherTypeID() == TypeID::get<SuccessNode>();
}
/// Return the high level pattern operation that is matched with this node.
pdl::PatternOp getPattern() const { return pattern; }
private:
/// The high level pattern operation that was successfully matched with this
/// node.
pdl::PatternOp pattern;
};
//===----------------------------------------------------------------------===//
// SwitchNode
/// A SwitchNode denotes a question with multiple potential results. These nodes
/// branch to a specific node based on the result of the question.
struct SwitchNode : public MatcherNode {
SwitchNode(Position *position, Qualifier *question);
/// Returns if the given matcher node is an instance of this class, used to
/// support type casting.
static bool classof(const MatcherNode *node) {
return node->getMatcherTypeID() == TypeID::get<SwitchNode>();
}
/// Returns the children of this switch node. The children are contained
/// within a mapping between the various case answers to destination matcher
/// nodes.
using ChildMapT = llvm::MapVector<Qualifier *, std::unique_ptr<MatcherNode>>;
ChildMapT &getChildren() { return children; }
/// Returns the child at the given index.
std::pair<Qualifier *, std::unique_ptr<MatcherNode>> &getChild(unsigned i) {
assert(i < children.size() && "invalid child index");
return *std::next(children.begin(), i);
}
private:
/// Switch predicate "answers" select the child. Answers that are not found
/// default to the failure node.
ChildMapT children;
};
} // end namespace pdl_to_pdl_interp
} // end namespace mlir
#endif // MLIR_CONVERSION_PDLTOPDLINTERP_PREDICATETREE_H_