Files
clang-p2996/mlir/lib/Dialect/Vector/VectorUtils.cpp
thomasraoux 291025389c [mlir][vector] Refactor Vector Unrolling and remove Tuple ops
Simplify vector unrolling pattern to be more aligned with rest of the
patterns and be closer to vector distribution.
The new implementation uses ExtractStridedSlice/InsertStridedSlice
instead of the Tuple ops. After this change the ops based on Tuple don't
have any more used so they can be removed.

This allows removing signifcant amount of dead code and will allow
extending the unrolling code going forward.

Differential Revision: https://reviews.llvm.org/D105381
2021-07-07 11:11:26 -07:00

358 lines
14 KiB
C++

//===- VectorUtils.cpp - MLIR Utilities for VectorOps ------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utility methods for working with the Vector dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/VectorUtils.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Operation.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/MathExtras.h"
#include <numeric>
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
using namespace mlir;
/// Helper function that creates a memref::DimOp or tensor::DimOp depending on
/// the type of `source`.
Value mlir::vector::createOrFoldDimOp(OpBuilder &b, Location loc, Value source,
int64_t dim) {
if (source.getType().isa<UnrankedMemRefType, MemRefType>())
return b.createOrFold<memref::DimOp>(loc, source, dim);
if (source.getType().isa<UnrankedTensorType, RankedTensorType>())
return b.createOrFold<tensor::DimOp>(loc, source, dim);
llvm_unreachable("Expected MemRefType or TensorType");
}
/// Return the number of elements of basis, `0` if empty.
int64_t mlir::computeMaxLinearIndex(ArrayRef<int64_t> basis) {
if (basis.empty())
return 0;
return std::accumulate(basis.begin(), basis.end(), 1,
std::multiplies<int64_t>());
}
SmallVector<int64_t, 4> mlir::computeStrides(ArrayRef<int64_t> shape,
ArrayRef<int64_t> sizes) {
int64_t rank = shape.size();
// Compute the count for each dimension.
SmallVector<int64_t, 4> sliceDimCounts(rank);
for (int64_t r = 0; r < rank; ++r)
sliceDimCounts[r] = ceilDiv(shape[r], sizes[r]);
// Use that to compute the slice stride for each dimension.
SmallVector<int64_t, 4> sliceStrides(rank);
sliceStrides[rank - 1] = 1;
for (int64_t r = rank - 2; r >= 0; --r)
sliceStrides[r] = sliceStrides[r + 1] * sliceDimCounts[r + 1];
return sliceStrides;
}
int64_t mlir::linearize(ArrayRef<int64_t> offsets, ArrayRef<int64_t> basis) {
assert(offsets.size() == basis.size());
int64_t linearIndex = 0;
for (unsigned idx = 0, e = basis.size(); idx < e; ++idx)
linearIndex += offsets[idx] * basis[idx];
return linearIndex;
}
SmallVector<int64_t, 4> mlir::delinearize(ArrayRef<int64_t> sliceStrides,
int64_t index) {
int64_t rank = sliceStrides.size();
SmallVector<int64_t, 4> vectorOffsets(rank);
for (int64_t r = 0; r < rank; ++r) {
assert(sliceStrides[r] > 0);
vectorOffsets[r] = index / sliceStrides[r];
index %= sliceStrides[r];
}
return vectorOffsets;
}
SmallVector<int64_t, 4> mlir::computeElementOffsetsFromVectorSliceOffsets(
ArrayRef<int64_t> sizes, ArrayRef<int64_t> vectorOffsets) {
SmallVector<int64_t, 4> result;
for (auto it : llvm::zip(vectorOffsets, sizes))
result.push_back(std::get<0>(it) * std::get<1>(it));
return result;
}
Optional<SmallVector<int64_t, 4>> mlir::shapeRatio(ArrayRef<int64_t> superShape,
ArrayRef<int64_t> subShape) {
if (superShape.size() < subShape.size()) {
return Optional<SmallVector<int64_t, 4>>();
}
// Starting from the end, compute the integer divisors.
std::vector<int64_t> result;
result.reserve(superShape.size());
int64_t superSize = 0, subSize = 0;
for (auto it :
llvm::zip(llvm::reverse(superShape), llvm::reverse(subShape))) {
std::tie(superSize, subSize) = it;
assert(superSize > 0 && "superSize must be > 0");
assert(subSize > 0 && "subSize must be > 0");
// If integral division does not occur, return and let the caller decide.
if (superSize % subSize != 0)
return None;
result.push_back(superSize / subSize);
}
// At this point we computed the ratio (in reverse) for the common
// size. Fill with the remaining entries from the super-vector shape (still in
// reverse).
int commonSize = subShape.size();
std::copy(superShape.rbegin() + commonSize, superShape.rend(),
std::back_inserter(result));
assert(result.size() == superShape.size() &&
"super to sub shape ratio is not of the same size as the super rank");
// Reverse again to get it back in the proper order and return.
return SmallVector<int64_t, 4>{result.rbegin(), result.rend()};
}
Optional<SmallVector<int64_t, 4>> mlir::shapeRatio(VectorType superVectorType,
VectorType subVectorType) {
assert(superVectorType.getElementType() == subVectorType.getElementType() &&
"vector types must be of the same elemental type");
return shapeRatio(superVectorType.getShape(), subVectorType.getShape());
}
/// Constructs a permutation map from memref indices to vector dimension.
///
/// The implementation uses the knowledge of the mapping of enclosing loop to
/// vector dimension. `enclosingLoopToVectorDim` carries this information as a
/// map with:
/// - keys representing "vectorized enclosing loops";
/// - values representing the corresponding vector dimension.
/// The algorithm traverses "vectorized enclosing loops" and extracts the
/// at-most-one MemRef index that is invariant along said loop. This index is
/// guaranteed to be at most one by construction: otherwise the MemRef is not
/// vectorizable.
/// If this invariant index is found, it is added to the permutation_map at the
/// proper vector dimension.
/// If no index is found to be invariant, 0 is added to the permutation_map and
/// corresponds to a vector broadcast along that dimension.
///
/// Returns an empty AffineMap if `enclosingLoopToVectorDim` is empty,
/// signalling that no permutation map can be constructed given
/// `enclosingLoopToVectorDim`.
///
/// Examples can be found in the documentation of `makePermutationMap`, in the
/// header file.
static AffineMap makePermutationMap(
ArrayRef<Value> indices,
const DenseMap<Operation *, unsigned> &enclosingLoopToVectorDim) {
if (enclosingLoopToVectorDim.empty())
return AffineMap();
MLIRContext *context =
enclosingLoopToVectorDim.begin()->getFirst()->getContext();
SmallVector<AffineExpr, 4> perm(enclosingLoopToVectorDim.size(),
getAffineConstantExpr(0, context));
for (auto kvp : enclosingLoopToVectorDim) {
assert(kvp.second < perm.size());
auto invariants = getInvariantAccesses(
cast<AffineForOp>(kvp.first).getInductionVar(), indices);
unsigned numIndices = indices.size();
unsigned countInvariantIndices = 0;
for (unsigned dim = 0; dim < numIndices; ++dim) {
if (!invariants.count(indices[dim])) {
assert(perm[kvp.second] == getAffineConstantExpr(0, context) &&
"permutationMap already has an entry along dim");
perm[kvp.second] = getAffineDimExpr(dim, context);
} else {
++countInvariantIndices;
}
}
assert((countInvariantIndices == numIndices ||
countInvariantIndices == numIndices - 1) &&
"Vectorization prerequisite violated: at most 1 index may be "
"invariant wrt a vectorized loop");
}
return AffineMap::get(indices.size(), 0, perm, context);
}
/// Implementation detail that walks up the parents and records the ones with
/// the specified type.
/// TODO: could also be implemented as a collect parents followed by a
/// filter and made available outside this file.
template <typename T>
static SetVector<Operation *> getParentsOfType(Block *block) {
SetVector<Operation *> res;
auto *current = block->getParentOp();
while (current) {
if (auto typedParent = dyn_cast<T>(current)) {
assert(res.count(current) == 0 && "Already inserted");
res.insert(current);
}
current = current->getParentOp();
}
return res;
}
/// Returns the enclosing AffineForOp, from closest to farthest.
static SetVector<Operation *> getEnclosingforOps(Block *block) {
return getParentsOfType<AffineForOp>(block);
}
AffineMap mlir::makePermutationMap(
Block *insertPoint, ArrayRef<Value> indices,
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
DenseMap<Operation *, unsigned> enclosingLoopToVectorDim;
auto enclosingLoops = getEnclosingforOps(insertPoint);
for (auto *forInst : enclosingLoops) {
auto it = loopToVectorDim.find(forInst);
if (it != loopToVectorDim.end()) {
enclosingLoopToVectorDim.insert(*it);
}
}
return ::makePermutationMap(indices, enclosingLoopToVectorDim);
}
AffineMap mlir::makePermutationMap(
Operation *op, ArrayRef<Value> indices,
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
return makePermutationMap(op->getBlock(), indices, loopToVectorDim);
}
AffineMap mlir::getTransferMinorIdentityMap(ShapedType shapedType,
VectorType vectorType) {
int64_t elementVectorRank = 0;
VectorType elementVectorType =
shapedType.getElementType().dyn_cast<VectorType>();
if (elementVectorType)
elementVectorRank += elementVectorType.getRank();
return AffineMap::getMinorIdentityMap(
shapedType.getRank(), vectorType.getRank() - elementVectorRank,
shapedType.getContext());
}
bool matcher::operatesOnSuperVectorsOf(Operation &op,
VectorType subVectorType) {
// First, extract the vector type and distinguish between:
// a. ops that *must* lower a super-vector (i.e. vector.transfer_read,
// vector.transfer_write); and
// b. ops that *may* lower a super-vector (all other ops).
// The ops that *may* lower a super-vector only do so if the super-vector to
// sub-vector ratio exists. The ops that *must* lower a super-vector are
// explicitly checked for this property.
/// TODO: there should be a single function for all ops to do this so we
/// do not have to special case. Maybe a trait, or just a method, unclear atm.
bool mustDivide = false;
(void)mustDivide;
VectorType superVectorType;
if (auto transfer = dyn_cast<VectorTransferOpInterface>(op)) {
superVectorType = transfer.getVectorType();
mustDivide = true;
} else if (op.getNumResults() == 0) {
if (!isa<ReturnOp>(op)) {
op.emitError("NYI: assuming only return operations can have 0 "
" results at this point");
}
return false;
} else if (op.getNumResults() == 1) {
if (auto v = op.getResult(0).getType().dyn_cast<VectorType>()) {
superVectorType = v;
} else {
// Not a vector type.
return false;
}
} else {
// Not a vector.transfer and has more than 1 result, fail hard for now to
// wake us up when something changes.
op.emitError("NYI: operation has more than 1 result");
return false;
}
// Get the ratio.
auto ratio = shapeRatio(superVectorType, subVectorType);
// Sanity check.
assert((ratio.hasValue() || !mustDivide) &&
"vector.transfer operation in which super-vector size is not an"
" integer multiple of sub-vector size");
// This catches cases that are not strictly necessary to have multiplicity but
// still aren't divisible by the sub-vector shape.
// This could be useful information if we wanted to reshape at the level of
// the vector type (but we would have to look at the compute and distinguish
// between parallel, reduction and possibly other cases.
if (!ratio.hasValue()) {
return false;
}
return true;
}
bool mlir::isDisjointTransferIndices(VectorTransferOpInterface transferA,
VectorTransferOpInterface transferB) {
// For simplicity only look at transfer of same type.
if (transferA.getVectorType() != transferB.getVectorType())
return false;
unsigned rankOffset = transferA.getLeadingShapedRank();
for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
auto indexA = transferA.indices()[i].getDefiningOp<ConstantOp>();
auto indexB = transferB.indices()[i].getDefiningOp<ConstantOp>();
// If any of the indices are dynamic we cannot prove anything.
if (!indexA || !indexB)
continue;
if (i < rankOffset) {
// For leading dimensions, if we can prove that index are different we
// know we are accessing disjoint slices.
if (indexA.getValue().cast<IntegerAttr>().getInt() !=
indexB.getValue().cast<IntegerAttr>().getInt())
return true;
} else {
// For this dimension, we slice a part of the memref we need to make sure
// the intervals accessed don't overlap.
int64_t distance =
std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
indexB.getValue().cast<IntegerAttr>().getInt());
if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
return true;
}
}
return false;
}
bool mlir::isDisjointTransferSet(VectorTransferOpInterface transferA,
VectorTransferOpInterface transferB) {
if (transferA.source() != transferB.source())
return false;
return isDisjointTransferIndices(transferA, transferB);
}
bool mlir::checkSameValueRAW(vector::TransferWriteOp defWrite,
vector::TransferReadOp read) {
return !defWrite.hasOutOfBoundsDim() && !defWrite.mask() && !read.mask() &&
defWrite.indices() == read.indices() &&
defWrite.getVectorType() == read.getVectorType() &&
defWrite.permutation_map() == read.permutation_map();
}
bool mlir::checkSameValueWAW(vector::TransferWriteOp write,
vector::TransferWriteOp priorWrite) {
return priorWrite.indices() == write.indices() &&
priorWrite.mask() == write.mask() &&
priorWrite.getVectorType() == write.getVectorType() &&
priorWrite.permutation_map() == write.permutation_map();
}