Files
clang-p2996/mlir/lib/Pass/PassTiming.cpp
Fabian Schuiki 33f908c428 [MLIR] Factor pass timing out into a dedicated timing manager
This factors out the pass timing code into a separate `TimingManager`
that can be plugged into the `PassManager` from the outside. Users are
able to provide their own implementation of this manager, and use it to
time additional code paths outside of the pass manager. Also allows for
multiple `PassManager`s to run and contribute to a single timing report.

More specifically, moves most of the existing infrastructure in
`Pass/PassTiming.cpp` into a new `Support/Timing.cpp` file and adds a
public interface in `Support/Timing.h`. The `PassTiming` instrumentation
becomes a wrapper around the new timing infrastructure which adapts the
instrumentation callbacks to the new timers.

Reviewed By: rriddle, lattner

Differential Revision: https://reviews.llvm.org/D100647
2021-05-12 18:14:51 +02:00

166 lines
6.3 KiB
C++

//===- PassTiming.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Pass/PassManager.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Threading.h"
#include <chrono>
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// PassTiming
//===----------------------------------------------------------------------===//
namespace {
struct PassTiming : public PassInstrumentation {
PassTiming(TimingScope &timingScope) : rootScope(timingScope) {}
PassTiming(std::unique_ptr<TimingManager> tm)
: ownedTimingManager(std::move(tm)),
ownedTimingScope(ownedTimingManager->getRootScope()),
rootScope(ownedTimingScope) {}
/// If a pass can spawn additional work on other threads, it records the
/// index to its currently active timer here. Passes that run on a
/// newly-forked thread will check this list to find the active timer of the
/// parent thread into which the new thread should be nested.
DenseMap<PipelineParentInfo, unsigned> parentTimerIndices;
/// A stack of the currently active timing scopes per thread.
DenseMap<uint64_t, SmallVector<TimingScope, 4>> activeThreadTimers;
/// The timing manager owned by this instrumentation (in case timing was
/// enabled by the user on the pass manager without providing an external
/// timing manager). This *must* appear before the `ownedTimingScope` to
/// ensure the timing manager is destroyed *after* the scope, since the latter
/// may hold a timer that points into the former.
std::unique_ptr<TimingManager> ownedTimingManager;
TimingScope ownedTimingScope;
/// The root timing scope into which timing is reported.
TimingScope &rootScope;
//===--------------------------------------------------------------------===//
// Pipeline
//===--------------------------------------------------------------------===//
void runBeforePipeline(Identifier name,
const PipelineParentInfo &parentInfo) override {
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
TimingScope *parentScope;
if (activeTimers.empty()) {
auto it = parentTimerIndices.find(parentInfo);
if (it != parentTimerIndices.end())
parentScope =
&activeThreadTimers[parentInfo.parentThreadID][it->second];
else
parentScope = &rootScope;
} else {
parentScope = &activeTimers.back();
}
activeTimers.push_back(parentScope->nest(name.getAsOpaquePointer(), [name] {
return ("'" + name.strref() + "' Pipeline").str();
}));
}
void runAfterPipeline(Identifier, const PipelineParentInfo &) override {
auto &activeTimers = activeThreadTimers[llvm::get_threadid()];
assert(!activeTimers.empty() && "expected active timer");
activeTimers.pop_back();
}
//===--------------------------------------------------------------------===//
// Pass
//===--------------------------------------------------------------------===//
void runBeforePass(Pass *pass, Operation *) override {
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
auto &parentScope = activeTimers.empty() ? rootScope : activeTimers.back();
if (auto *adaptor = dyn_cast<OpToOpPassAdaptor>(pass)) {
parentTimerIndices[{tid, pass}] = activeTimers.size();
auto scope =
parentScope.nest(pass->getThreadingSiblingOrThis(),
[adaptor]() { return adaptor->getAdaptorName(); });
if (adaptor->getPassManagers().size() <= 1)
scope.hide();
activeTimers.push_back(std::move(scope));
} else {
activeTimers.push_back(
parentScope.nest(pass->getThreadingSiblingOrThis(),
[pass]() { return std::string(pass->getName()); }));
}
}
void runAfterPass(Pass *pass, Operation *) override {
auto tid = llvm::get_threadid();
if (isa<OpToOpPassAdaptor>(pass))
parentTimerIndices.erase({tid, pass});
auto &activeTimers = activeThreadTimers[tid];
assert(!activeTimers.empty() && "expected active timer");
activeTimers.pop_back();
}
void runAfterPassFailed(Pass *pass, Operation *op) override {
runAfterPass(pass, op);
}
//===--------------------------------------------------------------------===//
// Analysis
//===--------------------------------------------------------------------===//
void runBeforeAnalysis(StringRef name, TypeID id, Operation *) override {
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
auto &parentScope = activeTimers.empty() ? rootScope : activeTimers.back();
activeTimers.push_back(parentScope.nest(
id.getAsOpaquePointer(), [name] { return "(A) " + name.str(); }));
}
void runAfterAnalysis(StringRef, TypeID, Operation *) override {
auto &activeTimers = activeThreadTimers[llvm::get_threadid()];
assert(!activeTimers.empty() && "expected active timer");
activeTimers.pop_back();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// PassManager
//===----------------------------------------------------------------------===//
/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming(TimingScope &timingScope) {
if (!timingScope)
return;
addInstrumentation(std::make_unique<PassTiming>(timingScope));
}
/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming(std::unique_ptr<TimingManager> tm) {
if (!tm->getRootTimer())
return; // no need to keep the timing manager around if it's disabled
addInstrumentation(std::make_unique<PassTiming>(std::move(tm)));
}
/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming() {
auto tm = std::make_unique<DefaultTimingManager>();
tm->setEnabled(true);
enableTiming(std::move(tm));
}