Files
clang-p2996/llvm/lib/Transforms/IPO/SampleProfileProbe.cpp
Hongtao Yu ac068e014b [CSSPGO] Consume pseudo-probe-based AutoFDO profile
This change enables pseudo-probe-based sample counts to be consumed by the sample profile loader under the regular `-fprofile-sample-use` switch with minimal adjustments to the existing sample file formats. After the counts are imported, a probe helper, aka, a `PseudoProbeManager` object, is automatically launched to verify the CFG checksum of every function in the current compilation against the corresponding checksum from the profile. Mismatched checksums will cause a function profile to be slipped. A `SampleProfileProber` pass is scheduled before any of the `SampleProfileLoader` instances so that the CFG checksums as well as probe mappings are available during the profile loading time. The `PseudoProbeManager` object is set up right after the profile reading is done. In the future a CFG-based fuzzy matching could be done in `PseudoProbeManager`.

Samples will be applied only to pseudo probe instructions as well as probed callsites once the checksum verification goes through. Those instructions are processed in the same way that regular instructions would be processed in the line-number-based scenario. In other words, a function is processed in a regular way as if it was reduced to just containing pseudo probes (block probes and callsites).

**Adjustment to profile format **

A CFG checksum field is being added to the existing AutoFDO profile formats. So far only the text format and the extended binary format are supported. For the text format, a new line like
```
!CFGChecksum: 12345
```
is added to the end of the body sample lines. For the extended binary profile format, we introduce a metadata section to store the checksum map from function names to their CFG checksums.

Differential Revision: https://reviews.llvm.org/D92347
2020-12-16 15:57:18 -08:00

277 lines
10 KiB
C++

//===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileProber transformation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/SampleProfileProbe.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/CRC.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "sample-profile-probe"
STATISTIC(ArtificialDbgLine,
"Number of probes that have an artificial debug line");
PseudoProbeManager::PseudoProbeManager(const Module &M) {
if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
for (const auto *Operand : FuncInfo->operands()) {
const auto *MD = cast<MDNode>(Operand);
auto GUID =
mdconst::dyn_extract<ConstantInt>(MD->getOperand(0))->getZExtValue();
auto Hash =
mdconst::dyn_extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash));
}
}
}
const PseudoProbeDescriptor *
PseudoProbeManager::getDesc(const Function &F) const {
auto I = GUIDToProbeDescMap.find(
Function::getGUID(FunctionSamples::getCanonicalFnName(F)));
return I == GUIDToProbeDescMap.end() ? nullptr : &I->second;
}
bool PseudoProbeManager::moduleIsProbed(const Module &M) const {
return M.getNamedMetadata(PseudoProbeDescMetadataName);
}
bool PseudoProbeManager::profileIsValid(const Function &F,
const FunctionSamples &Samples) const {
const auto *Desc = getDesc(F);
if (!Desc) {
LLVM_DEBUG(dbgs() << "Probe descriptor missing for Function " << F.getName()
<< "\n");
return false;
} else {
if (Desc->getFunctionHash() != Samples.getFunctionHash()) {
LLVM_DEBUG(dbgs() << "Hash mismatch for Function " << F.getName()
<< "\n");
return false;
}
}
return true;
}
SampleProfileProber::SampleProfileProber(Function &Func,
const std::string &CurModuleUniqueId)
: F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
BlockProbeIds.clear();
CallProbeIds.clear();
LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
computeProbeIdForBlocks();
computeProbeIdForCallsites();
computeCFGHash();
}
// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
// value of each BB in the CFG. The higher 32 bits record the number of edges
// preceded by the number of indirect calls.
// This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
void SampleProfileProber::computeCFGHash() {
std::vector<uint8_t> Indexes;
JamCRC JC;
for (auto &BB : *F) {
auto *TI = BB.getTerminator();
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
auto *Succ = TI->getSuccessor(I);
auto Index = getBlockId(Succ);
for (int J = 0; J < 4; J++)
Indexes.push_back((uint8_t)(Index >> (J * 8)));
}
}
JC.update(Indexes);
FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
(uint64_t)Indexes.size() << 32 | JC.getCRC();
// Reserve bit 60-63 for other information purpose.
FunctionHash &= 0x0FFFFFFFFFFFFFFF;
assert(FunctionHash && "Function checksum should not be zero");
LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
<< ":\n"
<< " CRC = " << JC.getCRC() << ", Edges = "
<< Indexes.size() << ", ICSites = " << CallProbeIds.size()
<< ", Hash = " << FunctionHash << "\n");
}
void SampleProfileProber::computeProbeIdForBlocks() {
for (auto &BB : *F) {
BlockProbeIds[&BB] = ++LastProbeId;
}
}
void SampleProfileProber::computeProbeIdForCallsites() {
for (auto &BB : *F) {
for (auto &I : BB) {
if (!isa<CallBase>(I))
continue;
if (isa<IntrinsicInst>(&I))
continue;
CallProbeIds[&I] = ++LastProbeId;
}
}
}
uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
return I == BlockProbeIds.end() ? 0 : I->second;
}
uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
return Iter == CallProbeIds.end() ? 0 : Iter->second;
}
void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
Module *M = F.getParent();
MDBuilder MDB(F.getContext());
// Compute a GUID without considering the function's linkage type. This is
// fine since function name is the only key in the profile database.
uint64_t Guid = Function::getGUID(F.getName());
// Assign an artificial debug line to a probe that doesn't come with a real
// line. A probe not having a debug line will get an incomplete inline
// context. This will cause samples collected on the probe to be counted
// into the base profile instead of a context profile. The line number
// itself is not important though.
auto AssignDebugLoc = [&](Instruction *I) {
assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
"Expecting pseudo probe or call instructions");
if (!I->getDebugLoc()) {
if (auto *SP = F.getSubprogram()) {
auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
I->setDebugLoc(DIL);
ArtificialDbgLine++;
LLVM_DEBUG({
dbgs() << "\nIn Function " << F.getName()
<< " Probe gets an artificial debug line\n";
I->dump();
});
}
}
};
// Probe basic blocks.
for (auto &I : BlockProbeIds) {
BasicBlock *BB = I.first;
uint32_t Index = I.second;
// Insert a probe before an instruction with a valid debug line number which
// will be assigned to the probe. The line number will be used later to
// model the inline context when the probe is inlined into other functions.
// Debug instructions, phi nodes and lifetime markers do not have an valid
// line number. Real instructions generated by optimizations may not come
// with a line number either.
auto HasValidDbgLine = [](Instruction *J) {
return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
!J->isLifetimeStartOrEnd() && J->getDebugLoc();
};
Instruction *J = &*BB->getFirstInsertionPt();
while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
J = J->getNextNode();
}
IRBuilder<> Builder(J);
assert(Builder.GetInsertPoint() != BB->end() &&
"Cannot get the probing point");
Function *ProbeFn =
llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
Builder.getInt32(0)};
auto *Probe = Builder.CreateCall(ProbeFn, Args);
AssignDebugLoc(Probe);
}
// Probe both direct calls and indirect calls. Direct calls are probed so that
// their probe ID can be used as an call site identifier to represent a
// calling context.
for (auto &I : CallProbeIds) {
auto *Call = I.first;
uint32_t Index = I.second;
uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
? (uint32_t)PseudoProbeType::DirectCall
: (uint32_t)PseudoProbeType::IndirectCall;
AssignDebugLoc(Call);
// Levarge the 32-bit discriminator field of debug data to store the ID and
// type of a callsite probe. This gets rid of the dependency on plumbing a
// customized metadata through the codegen pipeline.
uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(Index, Type);
if (auto DIL = Call->getDebugLoc()) {
DIL = DIL->cloneWithDiscriminator(V);
Call->setDebugLoc(DIL);
}
}
// Create module-level metadata that contains function info necessary to
// synthesize probe-based sample counts, which are
// - FunctionGUID
// - FunctionHash.
// - FunctionName
auto Hash = getFunctionHash();
auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, &F);
auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
NMD->addOperand(MD);
// Preserve a comdat group to hold all probes materialized later. This
// allows that when the function is considered dead and removed, the
// materialized probes are disposed too.
// Imported functions are defined in another module. They do not need
// the following handling since same care will be taken for them in their
// original module. The pseudo probes inserted into an imported functions
// above will naturally not be emitted since the imported function is free
// from object emission. However they will be emitted together with the
// inliner functions that the imported function is inlined into. We are not
// creating a comdat group for an import function since it's useless anyway.
if (!F.isDeclarationForLinker()) {
if (TM) {
auto Triple = TM->getTargetTriple();
if (Triple.supportsCOMDAT() && TM->getFunctionSections()) {
GetOrCreateFunctionComdat(F, Triple, CurModuleUniqueId);
}
}
}
}
PreservedAnalyses SampleProfileProbePass::run(Module &M,
ModuleAnalysisManager &AM) {
auto ModuleId = getUniqueModuleId(&M);
// Create the pseudo probe desc metadata beforehand.
// Note that modules with only data but no functions will require this to
// be set up so that they will be known as probed later.
M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
for (auto &F : M) {
if (F.isDeclaration())
continue;
SampleProfileProber ProbeManager(F, ModuleId);
ProbeManager.instrumentOneFunc(F, TM);
}
return PreservedAnalyses::none();
}