Files
clang-p2996/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp
Sean Silva 129d6e554e [mlir] Move std.tensor_cast -> tensor.cast.
This is almost entirely mechanical.

Differential Revision: https://reviews.llvm.org/D93357
2020-12-17 16:06:56 -08:00

188 lines
7.1 KiB
C++

//===- Bufferize.cpp - Bufferization for std ops --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements bufferization of std ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Bufferize.h"
#include "PassDetail.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Transforms/Passes.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
namespace {
class BufferizeDimOp : public OpConversionPattern<DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(DimOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
DimOp::Adaptor adaptor(operands);
rewriter.replaceOpWithNewOp<DimOp>(op, adaptor.memrefOrTensor(),
adaptor.index());
return success();
}
};
} // namespace
namespace {
class BufferizeDynamicTensorFromElementsOp
: public OpConversionPattern<DynamicTensorFromElementsOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(DynamicTensorFromElementsOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Allocate memory.
Location loc = op.getLoc();
DynamicTensorFromElementsOp::Adaptor transformed(operands);
RankedTensorType tensorType = op.getType().cast<RankedTensorType>();
MemRefType memrefType =
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
Value result =
rewriter.create<AllocOp>(loc, memrefType, transformed.dynamicExtents());
// Collect loop bounds.
int64_t rank = tensorType.getRank();
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
SmallVector<Value, 4> lowerBounds(rank, zero);
SmallVector<Value, 4> steps(rank, one);
SmallVector<Value, 4> upperBounds;
int nextDynamicIndex = 0;
for (int i = 0; i < rank; i++) {
Value upperBound =
tensorType.isDynamicDim(i)
? transformed.dynamicExtents()[nextDynamicIndex++]
: rewriter.create<ConstantIndexOp>(loc, memrefType.getDimSize(i));
upperBounds.push_back(upperBound);
}
// Generate tensor elements with a parallel loop that stores into
// each element of the resulting memref.
//
// This is a bit tricky. We cannot simply clone the ops because when an op
// is cloned, it must be legalized. However, we want to allow arbitrary ops
// in the body that we don't necessarily have legalization patterns for as
// part of this dialect conversion invocation.
//
// To accomplish this, we use mergeBlockBefore to "move" this op's body
// into the scf.parallel's body.
auto parallel =
rewriter.create<scf::ParallelOp>(loc, lowerBounds, upperBounds, steps);
Block *parallelBody = parallel.getBody();
rewriter.mergeBlockBefore(op.getBody(), parallelBody->getTerminator(),
parallelBody->getArguments());
// Replace the inlined yield op with a store op. The scf.parallel's builder
// already populated an scf.yield at the end, so we don't need to worry
// about creating that.
Operation *elementYield = parallelBody->getTerminator()->getPrevNode();
rewriter.setInsertionPointAfter(elementYield);
rewriter.replaceOpWithNewOp<StoreOp>(elementYield,
elementYield->getOperands()[0], result,
parallelBody->getArguments());
rewriter.replaceOp(op, {result});
return success();
}
};
} // namespace
namespace {
class BufferizeSelectOp : public OpConversionPattern<SelectOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(SelectOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (!op.condition().getType().isa<IntegerType>())
return rewriter.notifyMatchFailure(op, "requires scalar condition");
SelectOp::Adaptor adaptor(operands);
rewriter.replaceOpWithNewOp<SelectOp>(
op, adaptor.condition(), adaptor.true_value(), adaptor.false_value());
return success();
}
};
} // namespace
namespace {
class BufferizeTensorFromElementsOp
: public OpConversionPattern<TensorFromElementsOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(TensorFromElementsOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
int numberOfElements = op.elements().size();
auto resultType = MemRefType::get(
{numberOfElements}, op.getType().cast<TensorType>().getElementType());
Value result = rewriter.create<AllocOp>(op.getLoc(), resultType);
for (auto element : llvm::enumerate(op.elements())) {
Value index =
rewriter.create<ConstantIndexOp>(op.getLoc(), element.index());
rewriter.create<StoreOp>(op.getLoc(), element.value(), result, index);
}
rewriter.replaceOp(op, {result});
return success();
}
};
} // namespace
void mlir::populateStdBufferizePatterns(MLIRContext *context,
BufferizeTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<
// clang-format off
BufferizeDimOp,
BufferizeDynamicTensorFromElementsOp,
BufferizeSelectOp,
BufferizeTensorFromElementsOp
// clang-format on
>(typeConverter, context);
}
namespace {
struct StdBufferizePass : public StdBufferizeBase<StdBufferizePass> {
void runOnFunction() override {
auto *context = &getContext();
BufferizeTypeConverter typeConverter;
OwningRewritePatternList patterns;
ConversionTarget target(*context);
target.addLegalDialect<StandardOpsDialect>();
target.addLegalDialect<scf::SCFDialect>();
populateStdBufferizePatterns(context, typeConverter, patterns);
target.addIllegalOp<DynamicTensorFromElementsOp, TensorFromElementsOp>();
// We only bufferize the case of tensor selected type and scalar condition,
// as that boils down to a select over memref descriptors (don't need to
// touch the data).
target.addDynamicallyLegalOp<SelectOp>([&](SelectOp op) {
return typeConverter.isLegal(op.getType()) ||
!op.condition().getType().isa<IntegerType>();
});
target.addDynamicallyLegalOp<DimOp>(
[&](DimOp op) { return typeConverter.isLegal(op); });
if (failed(
applyPartialConversion(getFunction(), target, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<Pass> mlir::createStdBufferizePass() {
return std::make_unique<StdBufferizePass>();
}