Files
clang-p2996/flang/lib/Lower/CharacterExpr.cpp
Mehdi Amini ca0ed40e00 Remove builder that takes SSA value instead of Attribute on ExtractValueOp, InsetValueOp, and InsertOnRangeOp
This builder exposed a somehow "unsafe" API: it pretends we can
construct an InsertOnRangeOp from a range of SSA values, even though
this will crash if these aren't the result of `arith.constant` since
the operation actually needs attribute values (a build method can't
fail gracefully).
That means that the caller must check for the producer, at which
point they can just assemble the attribute array directly and call
the existing builder.

The existing call-sites were even in a worse state here: they would
actually create a constant operation that wouldn't be used and only
serve to carry the attribute through the builder API.

Differential Revision: https://reviews.llvm.org/D112946
2021-11-02 22:35:47 +00:00

461 lines
18 KiB
C++

//===-- CharacterExpr.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/CharacterExpr.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/DoLoopHelper.h"
#include "flang/Lower/IntrinsicCall.h"
//===----------------------------------------------------------------------===//
// CharacterExprHelper implementation
//===----------------------------------------------------------------------===//
/// Get fir.char<kind> type with the same kind as inside str.
static fir::CharacterType getCharacterType(mlir::Type type) {
if (auto boxType = type.dyn_cast<fir::BoxCharType>())
return boxType.getEleTy();
if (auto refType = type.dyn_cast<fir::ReferenceType>())
type = refType.getEleTy();
if (auto seqType = type.dyn_cast<fir::SequenceType>()) {
assert(seqType.getShape().size() == 1 && "rank must be 1");
type = seqType.getEleTy();
}
if (auto charType = type.dyn_cast<fir::CharacterType>())
return charType;
llvm_unreachable("Invalid character value type");
}
static fir::CharacterType getCharacterType(const fir::CharBoxValue &box) {
return getCharacterType(box.getBuffer().getType());
}
static bool needToMaterialize(const fir::CharBoxValue &box) {
return box.getBuffer().getType().isa<fir::SequenceType>() ||
box.getBuffer().getType().isa<fir::CharacterType>();
}
static std::optional<fir::SequenceType::Extent>
getCompileTimeLength(const fir::CharBoxValue &box) {
// FIXME: should this just return box.getLen() ??
auto type = box.getBuffer().getType();
if (type.isa<fir::CharacterType>())
return 1;
if (auto refType = type.dyn_cast<fir::ReferenceType>())
type = refType.getEleTy();
if (auto seqType = type.dyn_cast<fir::SequenceType>()) {
auto shape = seqType.getShape();
assert(shape.size() == 1 && "only scalar character supported");
if (shape[0] != fir::SequenceType::getUnknownExtent())
return shape[0];
}
return {};
}
fir::CharBoxValue Fortran::lower::CharacterExprHelper::materializeValue(
const fir::CharBoxValue &str) {
if (!needToMaterialize(str))
return str;
auto variable = builder.create<fir::AllocaOp>(loc, str.getBuffer().getType());
builder.create<fir::StoreOp>(loc, str.getBuffer(), variable);
return {variable, str.getLen()};
}
fir::CharBoxValue
Fortran::lower::CharacterExprHelper::toDataLengthPair(mlir::Value character) {
// TODO: get rid of toDataLengthPair when adding support for arrays
auto charBox = toExtendedValue(character).getCharBox();
assert(charBox && "Array unsupported in character lowering helper");
return *charBox;
}
fir::ExtendedValue
Fortran::lower::CharacterExprHelper::toExtendedValue(mlir::Value character,
mlir::Value len) {
auto lenType = getLengthType();
auto type = character.getType();
auto base = character;
mlir::Value resultLen = len;
llvm::SmallVector<mlir::Value, 2> extents;
if (auto refType = type.dyn_cast<fir::ReferenceType>())
type = refType.getEleTy();
if (auto arrayType = type.dyn_cast<fir::SequenceType>()) {
type = arrayType.getEleTy();
auto shape = arrayType.getShape();
auto cstLen = shape[0];
if (!resultLen && cstLen != fir::SequenceType::getUnknownExtent())
resultLen = builder.createIntegerConstant(loc, lenType, cstLen);
// FIXME: only allow `?` in last dimension ?
auto typeExtents =
llvm::ArrayRef<fir::SequenceType::Extent>{shape}.drop_front();
auto indexType = builder.getIndexType();
for (auto extent : typeExtents) {
if (extent == fir::SequenceType::getUnknownExtent())
break;
extents.emplace_back(
builder.createIntegerConstant(loc, indexType, extent));
}
// Last extent might be missing in case of assumed-size. If more extents
// could not be deduced from type, that's an error (a fir.box should
// have been used in the interface).
if (extents.size() + 1 < typeExtents.size())
mlir::emitError(loc, "cannot retrieve array extents from type");
} else if (type.isa<fir::CharacterType>()) {
if (!resultLen)
resultLen = builder.createIntegerConstant(loc, lenType, 1);
} else if (auto boxCharType = type.dyn_cast<fir::BoxCharType>()) {
auto refType = builder.getRefType(boxCharType.getEleTy());
auto unboxed =
builder.create<fir::UnboxCharOp>(loc, refType, lenType, character);
base = unboxed.getResult(0);
if (!resultLen)
resultLen = unboxed.getResult(1);
} else if (type.isa<fir::BoxType>()) {
mlir::emitError(loc, "descriptor or derived type not yet handled");
} else {
llvm_unreachable("Cannot translate mlir::Value to character ExtendedValue");
}
if (!resultLen)
mlir::emitError(loc, "no dynamic length found for character");
if (!extents.empty())
return fir::CharArrayBoxValue{base, resultLen, extents};
return fir::CharBoxValue{base, resultLen};
}
/// Get fir.ref<fir.char<kind>> type.
mlir::Type Fortran::lower::CharacterExprHelper::getReferenceType(
const fir::CharBoxValue &box) const {
return builder.getRefType(getCharacterType(box));
}
mlir::Value
Fortran::lower::CharacterExprHelper::createEmbox(const fir::CharBoxValue &box) {
// BoxChar require a reference.
auto str = box;
if (needToMaterialize(box))
str = materializeValue(box);
auto kind = getCharacterType(str).getFKind();
auto boxCharType = fir::BoxCharType::get(builder.getContext(), kind);
auto refType = getReferenceType(str);
// So far, fir.emboxChar fails lowering to llvm when it is given
// fir.ref<fir.array<len x fir.char<kind>>> types, so convert to
// fir.ref<fir.char<kind>> if needed.
auto buff = str.getBuffer();
buff = builder.createConvert(loc, refType, buff);
// Convert in case the provided length is not of the integer type that must
// be used in boxchar.
auto lenType = getLengthType();
auto len = str.getLen();
len = builder.createConvert(loc, lenType, len);
return builder.create<fir::EmboxCharOp>(loc, boxCharType, buff, len);
}
mlir::Value Fortran::lower::CharacterExprHelper::createLoadCharAt(
const fir::CharBoxValue &str, mlir::Value index) {
// In case this is addressing a length one character scalar simply return
// the single character.
if (str.getBuffer().getType().isa<fir::CharacterType>())
return str.getBuffer();
auto addr = builder.create<fir::CoordinateOp>(loc, getReferenceType(str),
str.getBuffer(), index);
return builder.create<fir::LoadOp>(loc, addr);
}
void Fortran::lower::CharacterExprHelper::createStoreCharAt(
const fir::CharBoxValue &str, mlir::Value index, mlir::Value c) {
assert(!needToMaterialize(str) && "not in memory");
auto addr = builder.create<fir::CoordinateOp>(loc, getReferenceType(str),
str.getBuffer(), index);
builder.create<fir::StoreOp>(loc, c, addr);
}
void Fortran::lower::CharacterExprHelper::createCopy(
const fir::CharBoxValue &dest, const fir::CharBoxValue &src,
mlir::Value count) {
Fortran::lower::DoLoopHelper{builder, loc}.createLoop(
count, [&](Fortran::lower::FirOpBuilder &, mlir::Value index) {
auto charVal = createLoadCharAt(src, index);
createStoreCharAt(dest, index, charVal);
});
}
void Fortran::lower::CharacterExprHelper::createPadding(
const fir::CharBoxValue &str, mlir::Value lower, mlir::Value upper) {
auto blank = createBlankConstant(getCharacterType(str));
// Always create the loop, if upper < lower, no iteration will be
// executed.
Fortran::lower::DoLoopHelper{builder, loc}.createLoop(
lower, upper, [&](Fortran::lower::FirOpBuilder &, mlir::Value index) {
createStoreCharAt(str, index, blank);
});
}
fir::CharBoxValue
Fortran::lower::CharacterExprHelper::createTemp(mlir::Type type,
mlir::Value len) {
assert(type.isa<fir::CharacterType>() && "expected fir character type");
llvm::SmallVector<mlir::Value, 3> sizes{len};
auto ref = builder.allocateLocal(loc, type, llvm::StringRef{}, sizes);
return {ref, len};
}
// Simple length one character assignment without loops.
void Fortran::lower::CharacterExprHelper::createLengthOneAssign(
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
auto addr = lhs.getBuffer();
auto val = rhs.getBuffer();
// If rhs value resides in memory, load it.
if (!needToMaterialize(rhs))
val = builder.create<fir::LoadOp>(loc, val);
auto valTy = val.getType();
// Precondition is rhs is size 1, but it may be wrapped in a fir.array.
if (auto seqTy = valTy.dyn_cast<fir::SequenceType>()) {
auto zero = builder.getIntegerAttr(builder.getIndexType(), 0);
valTy = seqTy.getEleTy();
val = builder.create<fir::ExtractValueOp>(loc, valTy, val,
builder.getArrayAttr(zero));
}
auto addrTy = fir::ReferenceType::get(valTy);
addr = builder.createConvert(loc, addrTy, addr);
assert(fir::dyn_cast_ptrEleTy(addr.getType()) == val.getType());
builder.create<fir::StoreOp>(loc, val, addr);
}
void Fortran::lower::CharacterExprHelper::createAssign(
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
auto rhsCstLen = getCompileTimeLength(rhs);
auto lhsCstLen = getCompileTimeLength(lhs);
bool compileTimeSameLength =
lhsCstLen && rhsCstLen && *lhsCstLen == *rhsCstLen;
if (compileTimeSameLength && *lhsCstLen == 1) {
createLengthOneAssign(lhs, rhs);
return;
}
// Copy the minimum of the lhs and rhs lengths and pad the lhs remainder
// if needed.
mlir::Value copyCount = lhs.getLen();
if (!compileTimeSameLength)
copyCount =
Fortran::lower::genMin(builder, loc, {lhs.getLen(), rhs.getLen()});
fir::CharBoxValue safeRhs = rhs;
if (needToMaterialize(rhs)) {
// TODO: revisit now that character constant handling changed.
// Need to materialize the constant to get its elements.
// (No equivalent of fir.coordinate_of for array value).
safeRhs = materializeValue(rhs);
} else {
// If rhs is in memory, always assumes rhs might overlap with lhs
// in a way that require a temp for the copy. That can be optimize later.
// Only create a temp of copyCount size because we do not need more from
// rhs.
auto temp = createTemp(getCharacterType(rhs), copyCount);
createCopy(temp, rhs, copyCount);
safeRhs = temp;
}
// Actual copy
createCopy(lhs, safeRhs, copyCount);
// Pad if needed.
if (!compileTimeSameLength) {
auto one = builder.createIntegerConstant(loc, lhs.getLen().getType(), 1);
auto maxPadding =
builder.create<mlir::arith::SubIOp>(loc, lhs.getLen(), one);
createPadding(lhs, copyCount, maxPadding);
}
}
fir::CharBoxValue Fortran::lower::CharacterExprHelper::createConcatenate(
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
mlir::Value len =
builder.create<mlir::arith::AddIOp>(loc, lhs.getLen(), rhs.getLen());
auto temp = createTemp(getCharacterType(rhs), len);
createCopy(temp, lhs, lhs.getLen());
auto one = builder.createIntegerConstant(loc, len.getType(), 1);
auto upperBound = builder.create<mlir::arith::SubIOp>(loc, len, one);
auto lhsLen =
builder.createConvert(loc, builder.getIndexType(), lhs.getLen());
Fortran::lower::DoLoopHelper{builder, loc}.createLoop(
lhs.getLen(), upperBound, one,
[&](Fortran::lower::FirOpBuilder &bldr, mlir::Value index) {
auto rhsIndex = bldr.create<mlir::arith::SubIOp>(loc, index, lhsLen);
auto charVal = createLoadCharAt(rhs, rhsIndex);
createStoreCharAt(temp, index, charVal);
});
return temp;
}
fir::CharBoxValue Fortran::lower::CharacterExprHelper::createSubstring(
const fir::CharBoxValue &box, llvm::ArrayRef<mlir::Value> bounds) {
// Constant need to be materialize in memory to use fir.coordinate_of.
auto str = box;
if (needToMaterialize(box))
str = materializeValue(box);
auto nbounds{bounds.size()};
if (nbounds < 1 || nbounds > 2) {
mlir::emitError(loc, "Incorrect number of bounds in substring");
return {mlir::Value{}, mlir::Value{}};
}
mlir::SmallVector<mlir::Value, 2> castBounds;
// Convert bounds to length type to do safe arithmetic on it.
for (auto bound : bounds)
castBounds.push_back(builder.createConvert(loc, getLengthType(), bound));
auto lowerBound = castBounds[0];
// FIR CoordinateOp is zero based but Fortran substring are one based.
auto one = builder.createIntegerConstant(loc, lowerBound.getType(), 1);
auto offset =
builder.create<mlir::arith::SubIOp>(loc, lowerBound, one).getResult();
auto idxType = builder.getIndexType();
if (offset.getType() != idxType)
offset = builder.createConvert(loc, idxType, offset);
auto substringRef = builder.create<fir::CoordinateOp>(
loc, getReferenceType(str), str.getBuffer(), offset);
// Compute the length.
mlir::Value substringLen{};
if (nbounds < 2) {
substringLen =
builder.create<mlir::arith::SubIOp>(loc, str.getLen(), castBounds[0]);
} else {
substringLen =
builder.create<mlir::arith::SubIOp>(loc, castBounds[1], castBounds[0]);
}
substringLen = builder.create<mlir::arith::AddIOp>(loc, substringLen, one);
// Set length to zero if bounds were reversed (Fortran 2018 9.4.1)
auto zero = builder.createIntegerConstant(loc, substringLen.getType(), 0);
auto cdt = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::slt, substringLen, zero);
substringLen = builder.create<mlir::SelectOp>(loc, cdt, zero, substringLen);
return {substringRef, substringLen};
}
mlir::Value Fortran::lower::CharacterExprHelper::createLenTrim(
const fir::CharBoxValue &str) {
return {};
}
mlir::Value Fortran::lower::CharacterExprHelper::createTemp(mlir::Type type,
int len) {
assert(type.isa<fir::CharacterType>() && "expected fir character type");
assert(len >= 0 && "expected positive length");
fir::SequenceType::Shape shape{len};
auto seqType = fir::SequenceType::get(shape, type);
return builder.create<fir::AllocaOp>(loc, seqType);
}
// Returns integer with code for blank. The integer has the same
// size as the character. Blank has ascii space code for all kinds.
mlir::Value Fortran::lower::CharacterExprHelper::createBlankConstantCode(
fir::CharacterType type) {
auto bits = builder.getKindMap().getCharacterBitsize(type.getFKind());
auto intType = builder.getIntegerType(bits);
return builder.createIntegerConstant(loc, intType, ' ');
}
mlir::Value Fortran::lower::CharacterExprHelper::createBlankConstant(
fir::CharacterType type) {
return builder.createConvert(loc, type, createBlankConstantCode(type));
}
void Fortran::lower::CharacterExprHelper::createCopy(mlir::Value dest,
mlir::Value src,
mlir::Value count) {
createCopy(toDataLengthPair(dest), toDataLengthPair(src), count);
}
void Fortran::lower::CharacterExprHelper::createPadding(mlir::Value str,
mlir::Value lower,
mlir::Value upper) {
createPadding(toDataLengthPair(str), lower, upper);
}
mlir::Value Fortran::lower::CharacterExprHelper::createSubstring(
mlir::Value str, llvm::ArrayRef<mlir::Value> bounds) {
return createEmbox(createSubstring(toDataLengthPair(str), bounds));
}
void Fortran::lower::CharacterExprHelper::createAssign(mlir::Value lhs,
mlir::Value rhs) {
createAssign(toDataLengthPair(lhs), toDataLengthPair(rhs));
}
mlir::Value
Fortran::lower::CharacterExprHelper::createLenTrim(mlir::Value str) {
return createLenTrim(toDataLengthPair(str));
}
void Fortran::lower::CharacterExprHelper::createAssign(mlir::Value lptr,
mlir::Value llen,
mlir::Value rptr,
mlir::Value rlen) {
createAssign(fir::CharBoxValue{lptr, llen}, fir::CharBoxValue{rptr, rlen});
}
mlir::Value
Fortran::lower::CharacterExprHelper::createConcatenate(mlir::Value lhs,
mlir::Value rhs) {
return createEmbox(
createConcatenate(toDataLengthPair(lhs), toDataLengthPair(rhs)));
}
mlir::Value
Fortran::lower::CharacterExprHelper::createEmboxChar(mlir::Value addr,
mlir::Value len) {
return createEmbox(fir::CharBoxValue{addr, len});
}
std::pair<mlir::Value, mlir::Value>
Fortran::lower::CharacterExprHelper::createUnboxChar(mlir::Value boxChar) {
auto box = toDataLengthPair(boxChar);
return {box.getBuffer(), box.getLen()};
}
mlir::Value
Fortran::lower::CharacterExprHelper::createCharacterTemp(mlir::Type type,
mlir::Value len) {
return createEmbox(createTemp(type, len));
}
std::pair<mlir::Value, mlir::Value>
Fortran::lower::CharacterExprHelper::materializeCharacter(mlir::Value str) {
auto box = toDataLengthPair(str);
if (needToMaterialize(box))
box = materializeValue(box);
return {box.getBuffer(), box.getLen()};
}
bool Fortran::lower::CharacterExprHelper::isCharacterLiteral(mlir::Type type) {
if (auto seqType = type.dyn_cast<fir::SequenceType>())
return (seqType.getShape().size() == 1) &&
seqType.getEleTy().isa<fir::CharacterType>();
return false;
}
bool Fortran::lower::CharacterExprHelper::isCharacter(mlir::Type type) {
if (type.isa<fir::BoxCharType>())
return true;
if (auto refType = type.dyn_cast<fir::ReferenceType>())
type = refType.getEleTy();
if (auto seqType = type.dyn_cast<fir::SequenceType>())
if (seqType.getShape().size() == 1)
type = seqType.getEleTy();
return type.isa<fir::CharacterType>();
}
int Fortran::lower::CharacterExprHelper::getCharacterKind(mlir::Type type) {
return getCharacterType(type).getFKind();
}