Files
clang-p2996/mlir/lib/Target/SPIRV/Serialization/SerializeOps.cpp
Lei Zhang 5e55a20119 [mlir][spirv] Serialize selection with separate header block
The previous "optimization" that tries to reuse existing block for
selection header block can be problematic for deserialization
because it effectively pulls in previous ops in the selection op's
enclosing block into the selection op's header. When deserializing,
those ops will be placed in the selection op's region. If any of
the previous ops has usage after the section op, it will break. That
is, the following IR cannot round trip:

```mlir
^bb:
  %def = ...
  spv.mlir.selection { ... }
  %use = spv.SomeOp %def
```

This commit removes the "optimization" to always create new blocks
for the selection header.

Along the way, also made error reporting better in deserialization
by turning asserts into proper errors and add check of uses outside
of sinked structured control flow region blocks.

Reviewed By: Hardcode84

Differential Revision: https://reviews.llvm.org/D115582
2021-12-13 10:42:26 -05:00

717 lines
25 KiB
C++

//===- SerializeOps.cpp - MLIR SPIR-V Serialization (Ops) -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the serialization methods for MLIR SPIR-V module ops.
//
//===----------------------------------------------------------------------===//
#include "Serializer.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVAttributes.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Target/SPIRV/SPIRVBinaryUtils.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "spirv-serialization"
using namespace mlir;
/// A pre-order depth-first visitor function for processing basic blocks.
///
/// Visits the basic blocks starting from the given `headerBlock` in pre-order
/// depth-first manner and calls `blockHandler` on each block. Skips handling
/// blocks in the `skipBlocks` list. If `skipHeader` is true, `blockHandler`
/// will not be invoked in `headerBlock` but still handles all `headerBlock`'s
/// successors.
///
/// SPIR-V spec "2.16.1. Universal Validation Rules" requires that "the order
/// of blocks in a function must satisfy the rule that blocks appear before
/// all blocks they dominate." This can be achieved by a pre-order CFG
/// traversal algorithm. To make the serialization output more logical and
/// readable to human, we perform depth-first CFG traversal and delay the
/// serialization of the merge block and the continue block, if exists, until
/// after all other blocks have been processed.
static LogicalResult
visitInPrettyBlockOrder(Block *headerBlock,
function_ref<LogicalResult(Block *)> blockHandler,
bool skipHeader = false, BlockRange skipBlocks = {}) {
llvm::df_iterator_default_set<Block *, 4> doneBlocks;
doneBlocks.insert(skipBlocks.begin(), skipBlocks.end());
for (Block *block : llvm::depth_first_ext(headerBlock, doneBlocks)) {
if (skipHeader && block == headerBlock)
continue;
if (failed(blockHandler(block)))
return failure();
}
return success();
}
namespace mlir {
namespace spirv {
LogicalResult Serializer::processConstantOp(spirv::ConstantOp op) {
if (auto resultID = prepareConstant(op.getLoc(), op.getType(), op.value())) {
valueIDMap[op.getResult()] = resultID;
return success();
}
return failure();
}
LogicalResult Serializer::processSpecConstantOp(spirv::SpecConstantOp op) {
if (auto resultID = prepareConstantScalar(op.getLoc(), op.default_value(),
/*isSpec=*/true)) {
// Emit the OpDecorate instruction for SpecId.
if (auto specID = op->getAttrOfType<IntegerAttr>("spec_id")) {
auto val = static_cast<uint32_t>(specID.getInt());
if (failed(emitDecoration(resultID, spirv::Decoration::SpecId, {val})))
return failure();
}
specConstIDMap[op.sym_name()] = resultID;
return processName(resultID, op.sym_name());
}
return failure();
}
LogicalResult
Serializer::processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op) {
uint32_t typeID = 0;
if (failed(processType(op.getLoc(), op.type(), typeID))) {
return failure();
}
auto resultID = getNextID();
SmallVector<uint32_t, 8> operands;
operands.push_back(typeID);
operands.push_back(resultID);
auto constituents = op.constituents();
for (auto index : llvm::seq<uint32_t>(0, constituents.size())) {
auto constituent = constituents[index].dyn_cast<FlatSymbolRefAttr>();
auto constituentName = constituent.getValue();
auto constituentID = getSpecConstID(constituentName);
if (!constituentID) {
return op.emitError("unknown result <id> for specialization constant ")
<< constituentName;
}
operands.push_back(constituentID);
}
encodeInstructionInto(typesGlobalValues,
spirv::Opcode::OpSpecConstantComposite, operands);
specConstIDMap[op.sym_name()] = resultID;
return processName(resultID, op.sym_name());
}
LogicalResult
Serializer::processSpecConstantOperationOp(spirv::SpecConstantOperationOp op) {
uint32_t typeID = 0;
if (failed(processType(op.getLoc(), op.getType(), typeID))) {
return failure();
}
auto resultID = getNextID();
SmallVector<uint32_t, 8> operands;
operands.push_back(typeID);
operands.push_back(resultID);
Block &block = op.getRegion().getBlocks().front();
Operation &enclosedOp = block.getOperations().front();
std::string enclosedOpName;
llvm::raw_string_ostream rss(enclosedOpName);
rss << "Op" << enclosedOp.getName().stripDialect();
auto enclosedOpcode = spirv::symbolizeOpcode(rss.str());
if (!enclosedOpcode) {
op.emitError("Couldn't find op code for op ")
<< enclosedOp.getName().getStringRef();
return failure();
}
operands.push_back(static_cast<uint32_t>(enclosedOpcode.getValue()));
// Append operands to the enclosed op to the list of operands.
for (Value operand : enclosedOp.getOperands()) {
uint32_t id = getValueID(operand);
assert(id && "use before def!");
operands.push_back(id);
}
encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpSpecConstantOp,
operands);
valueIDMap[op.getResult()] = resultID;
return success();
}
LogicalResult Serializer::processUndefOp(spirv::UndefOp op) {
auto undefType = op.getType();
auto &id = undefValIDMap[undefType];
if (!id) {
id = getNextID();
uint32_t typeID = 0;
if (failed(processType(op.getLoc(), undefType, typeID)))
return failure();
encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpUndef,
{typeID, id});
}
valueIDMap[op.getResult()] = id;
return success();
}
LogicalResult Serializer::processFuncOp(spirv::FuncOp op) {
LLVM_DEBUG(llvm::dbgs() << "-- start function '" << op.getName() << "' --\n");
assert(functionHeader.empty() && functionBody.empty());
uint32_t fnTypeID = 0;
// Generate type of the function.
if (failed(processType(op.getLoc(), op.getType(), fnTypeID)))
return failure();
// Add the function definition.
SmallVector<uint32_t, 4> operands;
uint32_t resTypeID = 0;
auto resultTypes = op.getType().getResults();
if (resultTypes.size() > 1) {
return op.emitError("cannot serialize function with multiple return types");
}
if (failed(processType(op.getLoc(),
(resultTypes.empty() ? getVoidType() : resultTypes[0]),
resTypeID))) {
return failure();
}
operands.push_back(resTypeID);
auto funcID = getOrCreateFunctionID(op.getName());
operands.push_back(funcID);
operands.push_back(static_cast<uint32_t>(op.function_control()));
operands.push_back(fnTypeID);
encodeInstructionInto(functionHeader, spirv::Opcode::OpFunction, operands);
// Add function name.
if (failed(processName(funcID, op.getName()))) {
return failure();
}
// Declare the parameters.
for (auto arg : op.getArguments()) {
uint32_t argTypeID = 0;
if (failed(processType(op.getLoc(), arg.getType(), argTypeID))) {
return failure();
}
auto argValueID = getNextID();
valueIDMap[arg] = argValueID;
encodeInstructionInto(functionHeader, spirv::Opcode::OpFunctionParameter,
{argTypeID, argValueID});
}
// Process the body.
if (op.isExternal()) {
return op.emitError("external function is unhandled");
}
// Some instructions (e.g., OpVariable) in a function must be in the first
// block in the function. These instructions will be put in functionHeader.
// Thus, we put the label in functionHeader first, and omit it from the first
// block.
encodeInstructionInto(functionHeader, spirv::Opcode::OpLabel,
{getOrCreateBlockID(&op.front())});
if (failed(processBlock(&op.front(), /*omitLabel=*/true)))
return failure();
if (failed(visitInPrettyBlockOrder(
&op.front(), [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true))) {
return failure();
}
// There might be OpPhi instructions who have value references needing to fix.
for (const auto &deferredValue : deferredPhiValues) {
Value value = deferredValue.first;
uint32_t id = getValueID(value);
LLVM_DEBUG(llvm::dbgs() << "[phi] fix reference of value " << value
<< " to id = " << id << '\n');
assert(id && "OpPhi references undefined value!");
for (size_t offset : deferredValue.second)
functionBody[offset] = id;
}
deferredPhiValues.clear();
LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << op.getName()
<< "' --\n");
// Insert OpFunctionEnd.
encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionEnd, {});
functions.append(functionHeader.begin(), functionHeader.end());
functions.append(functionBody.begin(), functionBody.end());
functionHeader.clear();
functionBody.clear();
return success();
}
LogicalResult Serializer::processVariableOp(spirv::VariableOp op) {
SmallVector<uint32_t, 4> operands;
SmallVector<StringRef, 2> elidedAttrs;
uint32_t resultID = 0;
uint32_t resultTypeID = 0;
if (failed(processType(op.getLoc(), op.getType(), resultTypeID))) {
return failure();
}
operands.push_back(resultTypeID);
resultID = getNextID();
valueIDMap[op.getResult()] = resultID;
operands.push_back(resultID);
auto attr = op->getAttr(spirv::attributeName<spirv::StorageClass>());
if (attr) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back(spirv::attributeName<spirv::StorageClass>());
for (auto arg : op.getODSOperands(0)) {
auto argID = getValueID(arg);
if (!argID) {
return emitError(op.getLoc(), "operand 0 has a use before def");
}
operands.push_back(argID);
}
if (failed(emitDebugLine(functionHeader, op.getLoc())))
return failure();
encodeInstructionInto(functionHeader, spirv::Opcode::OpVariable, operands);
for (auto attr : op->getAttrs()) {
if (llvm::any_of(elidedAttrs, [&](StringRef elided) {
return attr.getName() == elided;
})) {
continue;
}
if (failed(processDecoration(op.getLoc(), resultID, attr))) {
return failure();
}
}
return success();
}
LogicalResult
Serializer::processGlobalVariableOp(spirv::GlobalVariableOp varOp) {
// Get TypeID.
uint32_t resultTypeID = 0;
SmallVector<StringRef, 4> elidedAttrs;
if (failed(processType(varOp.getLoc(), varOp.type(), resultTypeID))) {
return failure();
}
elidedAttrs.push_back("type");
SmallVector<uint32_t, 4> operands;
operands.push_back(resultTypeID);
auto resultID = getNextID();
// Encode the name.
auto varName = varOp.sym_name();
elidedAttrs.push_back(SymbolTable::getSymbolAttrName());
if (failed(processName(resultID, varName))) {
return failure();
}
globalVarIDMap[varName] = resultID;
operands.push_back(resultID);
// Encode StorageClass.
operands.push_back(static_cast<uint32_t>(varOp.storageClass()));
// Encode initialization.
if (auto initializer = varOp.initializer()) {
auto initializerID = getVariableID(initializer.getValue());
if (!initializerID) {
return emitError(varOp.getLoc(),
"invalid usage of undefined variable as initializer");
}
operands.push_back(initializerID);
elidedAttrs.push_back("initializer");
}
if (failed(emitDebugLine(typesGlobalValues, varOp.getLoc())))
return failure();
encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpVariable, operands);
elidedAttrs.push_back("initializer");
// Encode decorations.
for (auto attr : varOp->getAttrs()) {
if (llvm::any_of(elidedAttrs, [&](StringRef elided) {
return attr.getName() == elided;
})) {
continue;
}
if (failed(processDecoration(varOp.getLoc(), resultID, attr))) {
return failure();
}
}
return success();
}
LogicalResult Serializer::processSelectionOp(spirv::SelectionOp selectionOp) {
// Assign <id>s to all blocks so that branches inside the SelectionOp can
// resolve properly.
auto &body = selectionOp.body();
for (Block &block : body)
getOrCreateBlockID(&block);
auto *headerBlock = selectionOp.getHeaderBlock();
auto *mergeBlock = selectionOp.getMergeBlock();
auto headerID = getBlockID(headerBlock);
auto mergeID = getBlockID(mergeBlock);
auto loc = selectionOp.getLoc();
// This SelectionOp is in some MLIR block with preceding and following ops. In
// the binary format, it should reside in separate SPIR-V blocks from its
// preceding and following ops. So we need to emit unconditional branches to
// jump to this SelectionOp's SPIR-V blocks and jumping back to the normal
// flow afterwards.
encodeInstructionInto(functionBody, spirv::Opcode::OpBranch, {headerID});
// Emit the selection header block, which dominates all other blocks, first.
// We need to emit an OpSelectionMerge instruction before the selection header
// block's terminator.
auto emitSelectionMerge = [&]() {
if (failed(emitDebugLine(functionBody, loc)))
return failure();
lastProcessedWasMergeInst = true;
encodeInstructionInto(
functionBody, spirv::Opcode::OpSelectionMerge,
{mergeID, static_cast<uint32_t>(selectionOp.selection_control())});
return success();
};
if (failed(
processBlock(headerBlock, /*omitLabel=*/false, emitSelectionMerge)))
return failure();
// Process all blocks with a depth-first visitor starting from the header
// block. The selection header block and merge block are skipped by this
// visitor.
if (failed(visitInPrettyBlockOrder(
headerBlock, [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true, /*skipBlocks=*/{mergeBlock})))
return failure();
// There is nothing to do for the merge block in the selection, which just
// contains a spv.mlir.merge op, itself. But we need to have an OpLabel
// instruction to start a new SPIR-V block for ops following this SelectionOp.
// The block should use the <id> for the merge block.
encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
LLVM_DEBUG(llvm::dbgs() << "done merge ");
LLVM_DEBUG(printBlock(mergeBlock, llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "\n");
return success();
}
LogicalResult Serializer::processLoopOp(spirv::LoopOp loopOp) {
// Assign <id>s to all blocks so that branches inside the LoopOp can resolve
// properly. We don't need to assign for the entry block, which is just for
// satisfying MLIR region's structural requirement.
auto &body = loopOp.body();
for (Block &block : llvm::make_range(std::next(body.begin(), 1), body.end()))
getOrCreateBlockID(&block);
auto *headerBlock = loopOp.getHeaderBlock();
auto *continueBlock = loopOp.getContinueBlock();
auto *mergeBlock = loopOp.getMergeBlock();
auto headerID = getBlockID(headerBlock);
auto continueID = getBlockID(continueBlock);
auto mergeID = getBlockID(mergeBlock);
auto loc = loopOp.getLoc();
// This LoopOp is in some MLIR block with preceding and following ops. In the
// binary format, it should reside in separate SPIR-V blocks from its
// preceding and following ops. So we need to emit unconditional branches to
// jump to this LoopOp's SPIR-V blocks and jumping back to the normal flow
// afterwards.
encodeInstructionInto(functionBody, spirv::Opcode::OpBranch, {headerID});
// LoopOp's entry block is just there for satisfying MLIR's structural
// requirements so we omit it and start serialization from the loop header
// block.
// Emit the loop header block, which dominates all other blocks, first. We
// need to emit an OpLoopMerge instruction before the loop header block's
// terminator.
auto emitLoopMerge = [&]() {
if (failed(emitDebugLine(functionBody, loc)))
return failure();
lastProcessedWasMergeInst = true;
encodeInstructionInto(
functionBody, spirv::Opcode::OpLoopMerge,
{mergeID, continueID, static_cast<uint32_t>(loopOp.loop_control())});
return success();
};
if (failed(processBlock(headerBlock, /*omitLabel=*/false, emitLoopMerge)))
return failure();
// Process all blocks with a depth-first visitor starting from the header
// block. The loop header block, loop continue block, and loop merge block are
// skipped by this visitor and handled later in this function.
if (failed(visitInPrettyBlockOrder(
headerBlock, [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true, /*skipBlocks=*/{continueBlock, mergeBlock})))
return failure();
// We have handled all other blocks. Now get to the loop continue block.
if (failed(processBlock(continueBlock)))
return failure();
// There is nothing to do for the merge block in the loop, which just contains
// a spv.mlir.merge op, itself. But we need to have an OpLabel instruction to
// start a new SPIR-V block for ops following this LoopOp. The block should
// use the <id> for the merge block.
encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
LLVM_DEBUG(llvm::dbgs() << "done merge ");
LLVM_DEBUG(printBlock(mergeBlock, llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "\n");
return success();
}
LogicalResult Serializer::processBranchConditionalOp(
spirv::BranchConditionalOp condBranchOp) {
auto conditionID = getValueID(condBranchOp.condition());
auto trueLabelID = getOrCreateBlockID(condBranchOp.getTrueBlock());
auto falseLabelID = getOrCreateBlockID(condBranchOp.getFalseBlock());
SmallVector<uint32_t, 5> arguments{conditionID, trueLabelID, falseLabelID};
if (auto weights = condBranchOp.branch_weights()) {
for (auto val : weights->getValue())
arguments.push_back(val.cast<IntegerAttr>().getInt());
}
if (failed(emitDebugLine(functionBody, condBranchOp.getLoc())))
return failure();
encodeInstructionInto(functionBody, spirv::Opcode::OpBranchConditional,
arguments);
return success();
}
LogicalResult Serializer::processBranchOp(spirv::BranchOp branchOp) {
if (failed(emitDebugLine(functionBody, branchOp.getLoc())))
return failure();
encodeInstructionInto(functionBody, spirv::Opcode::OpBranch,
{getOrCreateBlockID(branchOp.getTarget())});
return success();
}
LogicalResult Serializer::processAddressOfOp(spirv::AddressOfOp addressOfOp) {
auto varName = addressOfOp.variable();
auto variableID = getVariableID(varName);
if (!variableID) {
return addressOfOp.emitError("unknown result <id> for variable ")
<< varName;
}
valueIDMap[addressOfOp.pointer()] = variableID;
return success();
}
LogicalResult
Serializer::processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp) {
auto constName = referenceOfOp.spec_const();
auto constID = getSpecConstID(constName);
if (!constID) {
return referenceOfOp.emitError(
"unknown result <id> for specialization constant ")
<< constName;
}
valueIDMap[referenceOfOp.reference()] = constID;
return success();
}
template <>
LogicalResult
Serializer::processOp<spirv::EntryPointOp>(spirv::EntryPointOp op) {
SmallVector<uint32_t, 4> operands;
// Add the ExecutionModel.
operands.push_back(static_cast<uint32_t>(op.execution_model()));
// Add the function <id>.
auto funcID = getFunctionID(op.fn());
if (!funcID) {
return op.emitError("missing <id> for function ")
<< op.fn()
<< "; function needs to be defined before spv.EntryPoint is "
"serialized";
}
operands.push_back(funcID);
// Add the name of the function.
spirv::encodeStringLiteralInto(operands, op.fn());
// Add the interface values.
if (auto interface = op.interface()) {
for (auto var : interface.getValue()) {
auto id = getVariableID(var.cast<FlatSymbolRefAttr>().getValue());
if (!id) {
return op.emitError("referencing undefined global variable."
"spv.EntryPoint is at the end of spv.module. All "
"referenced variables should already be defined");
}
operands.push_back(id);
}
}
encodeInstructionInto(entryPoints, spirv::Opcode::OpEntryPoint, operands);
return success();
}
template <>
LogicalResult
Serializer::processOp<spirv::ControlBarrierOp>(spirv::ControlBarrierOp op) {
StringRef argNames[] = {"execution_scope", "memory_scope",
"memory_semantics"};
SmallVector<uint32_t, 3> operands;
for (auto argName : argNames) {
auto argIntAttr = op->getAttrOfType<IntegerAttr>(argName);
auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
if (!operand) {
return failure();
}
operands.push_back(operand);
}
encodeInstructionInto(functionBody, spirv::Opcode::OpControlBarrier,
operands);
return success();
}
template <>
LogicalResult
Serializer::processOp<spirv::ExecutionModeOp>(spirv::ExecutionModeOp op) {
SmallVector<uint32_t, 4> operands;
// Add the function <id>.
auto funcID = getFunctionID(op.fn());
if (!funcID) {
return op.emitError("missing <id> for function ")
<< op.fn()
<< "; function needs to be serialized before ExecutionModeOp is "
"serialized";
}
operands.push_back(funcID);
// Add the ExecutionMode.
operands.push_back(static_cast<uint32_t>(op.execution_mode()));
// Serialize values if any.
auto values = op.values();
if (values) {
for (auto &intVal : values.getValue()) {
operands.push_back(static_cast<uint32_t>(
intVal.cast<IntegerAttr>().getValue().getZExtValue()));
}
}
encodeInstructionInto(executionModes, spirv::Opcode::OpExecutionMode,
operands);
return success();
}
template <>
LogicalResult
Serializer::processOp<spirv::MemoryBarrierOp>(spirv::MemoryBarrierOp op) {
StringRef argNames[] = {"memory_scope", "memory_semantics"};
SmallVector<uint32_t, 2> operands;
for (auto argName : argNames) {
auto argIntAttr = op->getAttrOfType<IntegerAttr>(argName);
auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
if (!operand) {
return failure();
}
operands.push_back(operand);
}
encodeInstructionInto(functionBody, spirv::Opcode::OpMemoryBarrier, operands);
return success();
}
template <>
LogicalResult
Serializer::processOp<spirv::FunctionCallOp>(spirv::FunctionCallOp op) {
auto funcName = op.callee();
uint32_t resTypeID = 0;
Type resultTy = op.getNumResults() ? *op.result_type_begin() : getVoidType();
if (failed(processType(op.getLoc(), resultTy, resTypeID)))
return failure();
auto funcID = getOrCreateFunctionID(funcName);
auto funcCallID = getNextID();
SmallVector<uint32_t, 8> operands{resTypeID, funcCallID, funcID};
for (auto value : op.arguments()) {
auto valueID = getValueID(value);
assert(valueID && "cannot find a value for spv.FunctionCall");
operands.push_back(valueID);
}
if (!resultTy.isa<NoneType>())
valueIDMap[op.getResult(0)] = funcCallID;
encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionCall, operands);
return success();
}
template <>
LogicalResult
Serializer::processOp<spirv::CopyMemoryOp>(spirv::CopyMemoryOp op) {
SmallVector<uint32_t, 4> operands;
SmallVector<StringRef, 2> elidedAttrs;
for (Value operand : op->getOperands()) {
auto id = getValueID(operand);
assert(id && "use before def!");
operands.push_back(id);
}
if (auto attr = op->getAttr("memory_access")) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back("memory_access");
if (auto attr = op->getAttr("alignment")) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back("alignment");
if (auto attr = op->getAttr("source_memory_access")) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back("source_memory_access");
if (auto attr = op->getAttr("source_alignment")) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back("source_alignment");
if (failed(emitDebugLine(functionBody, op.getLoc())))
return failure();
encodeInstructionInto(functionBody, spirv::Opcode::OpCopyMemory, operands);
return success();
}
// Pull in auto-generated Serializer::dispatchToAutogenSerialization() and
// various Serializer::processOp<...>() specializations.
#define GET_SERIALIZATION_FNS
#include "mlir/Dialect/SPIRV/IR/SPIRVSerialization.inc"
} // namespace spirv
} // namespace mlir