Files
clang-p2996/openmp/libomptarget/plugins/amdgpu/impl/system.cpp
Jon Chesterfield ae5348a38e [openmp][amdgpu] Make plugin robust to presence of explicit implicit arguments
OpenMP (compiler) does not currently request any implicit kernel
arguments. OpenMP (runtime) allocates and initialises a reasonable guess at
the implicit kernel arguments anyway.

This change makes the plugin check the number of explicit arguments, instead
of all arguments, and puts the pointer to hostcall buffer in both the current
location and at the offset expected when implicit arguments are added to the
metadata by D113538.

This is intended to keep things running while fixing the oversight in the
compiler (in D113538). Once that patch lands, and a following one marks
openmp kernels that use printf such that the backend emits an args element
with the right type (instead of hidden_node), the over-allocation can be
removed and the hardcoded 8*e+3 offset replaced with one read from the
.offset of the corresponding metadata element.

Reviewed By: estewart08

Differential Revision: https://reviews.llvm.org/D114274
2021-11-22 23:00:20 +00:00

739 lines
27 KiB
C++

//===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <libelf.h>
#include <cassert>
#include <sstream>
#include <string>
#include "internal.h"
#include "rt.h"
#include "msgpack.h"
namespace hsa {
// Wrap HSA iterate API in a shim that allows passing general callables
template <typename C>
hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
void *data) -> hsa_status_t {
C *unwrapped = static_cast<C *>(data);
return (*unwrapped)(executable, symbol);
};
return hsa_executable_iterate_symbols(executable, L,
static_cast<void *>(&cb));
}
} // namespace hsa
typedef unsigned char *address;
/*
* Note descriptors.
*/
// FreeBSD already declares Elf_Note (indirectly via <libelf.h>)
#if !defined(__FreeBSD__)
typedef struct {
uint32_t n_namesz; /* Length of note's name. */
uint32_t n_descsz; /* Length of note's value. */
uint32_t n_type; /* Type of note. */
// then name
// then padding, optional
// then desc, at 4 byte alignment (not 8, despite being elf64)
} Elf_Note;
#endif
class KernelArgMD {
public:
enum class ValueKind {
HiddenGlobalOffsetX,
HiddenGlobalOffsetY,
HiddenGlobalOffsetZ,
HiddenNone,
HiddenPrintfBuffer,
HiddenDefaultQueue,
HiddenCompletionAction,
HiddenMultiGridSyncArg,
HiddenHostcallBuffer,
Unknown
};
KernelArgMD()
: name_(std::string()), size_(0), offset_(0),
valueKind_(ValueKind::Unknown) {}
// fields
std::string name_;
uint32_t size_;
uint32_t offset_;
ValueKind valueKind_;
};
static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
// v3
// {"by_value", KernelArgMD::ValueKind::ByValue},
// {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"dynamic_shared_pointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"sampler", KernelArgMD::ValueKind::Sampler},
// {"image", KernelArgMD::ValueKind::Image},
// {"pipe", KernelArgMD::ValueKind::Pipe},
// {"queue", KernelArgMD::ValueKind::Queue},
{"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"hidden_none", KernelArgMD::ValueKind::HiddenNone},
{"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"hidden_completion_action",
KernelArgMD::ValueKind::HiddenCompletionAction},
{"hidden_multigrid_sync_arg",
KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
};
namespace core {
hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
// memory_fault.agent
// memory_fault.virtual_address
// memory_fault.fault_reason_mask
// fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
std::stringstream stream;
stream << std::hex << (uintptr_t)memory_fault.virtual_address;
std::string addr("0x" + stream.str());
std::string err_string = "[GPU Memory Error] Addr: " + addr;
err_string += " Reason: ";
if (!(memory_fault.fault_reason_mask & 0x00111111)) {
err_string += "No Idea! ";
} else {
if (memory_fault.fault_reason_mask & 0x00000001)
err_string += "Page not present or supervisor privilege. ";
if (memory_fault.fault_reason_mask & 0x00000010)
err_string += "Write access to a read-only page. ";
if (memory_fault.fault_reason_mask & 0x00000100)
err_string += "Execute access to a page marked NX. ";
if (memory_fault.fault_reason_mask & 0x00001000)
err_string += "Host access only. ";
if (memory_fault.fault_reason_mask & 0x00010000)
err_string += "ECC failure (if supported by HW). ";
if (memory_fault.fault_reason_mask & 0x00100000)
err_string += "Can't determine the exact fault address. ";
}
fprintf(stderr, "%s\n", err_string.c_str());
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t atl_init_gpu_context() {
hsa_status_t err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Registering the system for memory faults", get_error_string(err));
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
static bool isImplicit(KernelArgMD::ValueKind value_kind) {
switch (value_kind) {
case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
case KernelArgMD::ValueKind::HiddenNone:
case KernelArgMD::ValueKind::HiddenPrintfBuffer:
case KernelArgMD::ValueKind::HiddenDefaultQueue:
case KernelArgMD::ValueKind::HiddenCompletionAction:
case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
case KernelArgMD::ValueKind::HiddenHostcallBuffer:
return true;
default:
return false;
}
}
static std::pair<unsigned char *, unsigned char *>
find_metadata(void *binary, size_t binSize) {
std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
Elf *e = elf_memory(static_cast<char *>(binary), binSize);
if (elf_kind(e) != ELF_K_ELF) {
return failure;
}
size_t numpHdrs;
if (elf_getphdrnum(e, &numpHdrs) != 0) {
return failure;
}
Elf64_Phdr *pHdrs = elf64_getphdr(e);
for (size_t i = 0; i < numpHdrs; ++i) {
Elf64_Phdr pHdr = pHdrs[i];
// Look for the runtime metadata note
if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
// Iterate over the notes in this segment
address ptr = (address)binary + pHdr.p_offset;
address segmentEnd = ptr + pHdr.p_filesz;
while (ptr < segmentEnd) {
Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
address name = (address)&note[1];
if (note->n_type == 7 || note->n_type == 8) {
return failure;
} else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
note->n_namesz == sizeof "AMD" &&
!memcmp(name, "AMD", note->n_namesz)) {
// code object v2 uses yaml metadata, no longer supported
return failure;
} else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
note->n_namesz == sizeof "AMDGPU" &&
!memcmp(name, "AMDGPU", note->n_namesz)) {
// n_descsz = 485
// value is padded to 4 byte alignment, may want to move end up to
// match
size_t offset = sizeof(uint32_t) * 3 /* fields */
+ sizeof("AMDGPU") /* name */
+ 1 /* padding to 4 byte alignment */;
// Including the trailing padding means both pointers are 4 bytes
// aligned, which may be useful later.
unsigned char *metadata_start = (unsigned char *)ptr + offset;
unsigned char *metadata_end =
metadata_start + core::alignUp(note->n_descsz, 4);
return {metadata_start, metadata_end};
}
ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
core::alignUp(note->n_descsz, sizeof(int));
}
}
}
return failure;
}
namespace {
int map_lookup_array(msgpack::byte_range message, const char *needle,
msgpack::byte_range *res, uint64_t *size) {
unsigned count = 0;
struct s : msgpack::functors_defaults<s> {
s(unsigned &count, uint64_t *size) : count(count), size(size) {}
unsigned &count;
uint64_t *size;
const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
count++;
*size = N;
return bytes.end;
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
// If the message is an array, record number of
// elements in *size
msgpack::handle_msgpack<s>(value, {count, size});
// return the whole array
*res = value;
}
});
// Only claim success if exactly one key/array pair matched
return count != 1;
}
int map_lookup_string(msgpack::byte_range message, const char *needle,
std::string *res) {
unsigned count = 0;
struct s : public msgpack::functors_defaults<s> {
s(unsigned &count, std::string *res) : count(count), res(res) {}
unsigned &count;
std::string *res;
void handle_string(size_t N, const unsigned char *str) {
count++;
*res = std::string(str, str + N);
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::handle_msgpack<s>(value, {count, res});
}
});
return count != 1;
}
int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
uint64_t *res) {
unsigned count = 0;
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::foronly_unsigned(value, [&](uint64_t x) {
count++;
*res = x;
});
}
});
return count != 1;
}
int array_lookup_element(msgpack::byte_range message, uint64_t elt,
msgpack::byte_range *res) {
int rc = 1;
uint64_t i = 0;
msgpack::foreach_array(message, [&](msgpack::byte_range value) {
if (i == elt) {
*res = value;
rc = 0;
}
i++;
});
return rc;
}
int populate_kernelArgMD(msgpack::byte_range args_element,
KernelArgMD *kernelarg) {
using namespace msgpack;
int error = 0;
foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
if (message_is_string(key, ".name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->name_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".size")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
} else if (message_is_string(key, ".offset")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
} else if (message_is_string(key, ".value_kind")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
std::string s = std::string(str, str + N);
auto itValueKind = ArgValueKind.find(s);
if (itValueKind != ArgValueKind.end()) {
kernelarg->valueKind_ = itValueKind->second;
}
});
}
});
return error;
}
} // namespace
static hsa_status_t get_code_object_custom_metadata(
void *binary, size_t binSize,
std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
// parse code object with different keys from v2
// also, the kernel name is not the same as the symbol name -- so a
// symbol->name map is needed
std::pair<unsigned char *, unsigned char *> metadata =
find_metadata(binary, binSize);
if (!metadata.first) {
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
uint64_t kernelsSize = 0;
int msgpack_errors = 0;
msgpack::byte_range kernel_array;
msgpack_errors =
map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
&kernel_array, &kernelsSize);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernels lookup in program metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
for (size_t i = 0; i < kernelsSize; i++) {
assert(msgpack_errors == 0);
std::string kernelName;
std::string symbolName;
msgpack::byte_range element;
msgpack_errors += array_lookup_element(kernel_array, i, &element);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"element lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
msgpack_errors += map_lookup_string(element, ".name", &kernelName);
msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"strings lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
// Make sure that kernelName + ".kd" == symbolName
if ((kernelName + ".kd") != symbolName) {
printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
__FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"sgpr count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.sgpr_count = sgpr_count;
msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"vgpr count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.vgpr_count = vgpr_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"sgpr spill count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.sgpr_spill_count = sgpr_spill_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"vgpr spill count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.vgpr_spill_count = vgpr_spill_count;
size_t kernel_explicit_args_size = 0;
uint64_t kernel_segment_size;
msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
&kernel_segment_size);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernarg segment size metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
bool hasHiddenArgs = false;
if (kernel_segment_size > 0) {
uint64_t argsSize;
size_t offset = 0;
msgpack::byte_range args_array;
msgpack_errors +=
map_lookup_array(element, ".args", &args_array, &argsSize);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernel args metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
for (size_t i = 0; i < argsSize; ++i) {
KernelArgMD lcArg;
msgpack::byte_range args_element;
msgpack_errors += array_lookup_element(args_array, i, &args_element);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"iterate args map in kernel args metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"iterate args map in kernel args metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
// v3 has offset field and not align field
size_t new_offset = lcArg.offset_;
size_t padding = new_offset - offset;
offset = new_offset;
DP("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), lcArg.size_,
lcArg.offset_);
offset += lcArg.size_;
// check if the arg is a hidden/implicit arg
// this logic assumes that all hidden args are 8-byte aligned
if (!isImplicit(lcArg.valueKind_)) {
info.explicit_argument_count++;
kernel_explicit_args_size += lcArg.size_;
} else {
info.implicit_argument_count++;
hasHiddenArgs = true;
}
kernel_explicit_args_size += padding;
}
}
// TODO: Probably don't want this arithmetic
info.kernel_segment_size =
(hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size);
DP("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
kernel_segment_size, info.kernel_segment_size);
// kernel received, now add it to the kernel info table
KernelInfoTable[kernelName] = info;
}
return HSA_STATUS_SUCCESS;
}
static hsa_status_t
populate_InfoTables(hsa_executable_symbol_t symbol,
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
hsa_symbol_kind_t type;
uint32_t name_length;
hsa_status_t err;
err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
&type);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
DP("Exec Symbol type: %d\n", type);
if (type == HSA_SYMBOL_KIND_KERNEL) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
// remove the suffix .kd from symbol name.
name[name_length - 3] = 0;
atl_kernel_info_t info;
std::string kernelName(name);
// by now, the kernel info table should already have an entry
// because the non-ROCr custom code object parsing is called before
// iterating over the code object symbols using ROCr
if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
DP("amdgpu internal consistency error\n");
return HSA_STATUS_ERROR;
}
// found, so assign and update
info = KernelInfoTable[kernelName];
/* Extract dispatch information from the symbol */
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
&(info.kernel_object));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the symbol from the executable",
get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
&(info.group_segment_size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the group segment size from the executable",
get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
&(info.private_segment_size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the private segment from the executable",
get_error_string(err));
return err;
}
DP("Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
"kernarg\n",
kernelName.c_str(), info.kernel_object, info.group_segment_size,
info.private_segment_size, info.kernel_segment_size);
// assign it back to the kernel info table
KernelInfoTable[kernelName] = info;
free(name);
} else if (type == HSA_SYMBOL_KIND_VARIABLE) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
name[name_length] = 0;
atl_symbol_info_t info;
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info address extraction", get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info size extraction", get_error_string(err));
return err;
}
DP("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, info.size);
SymbolInfoTable[std::string(name)] = info;
free(name);
} else {
DP("Symbol is an indirect function\n");
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t RegisterModuleFromMemory(
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
void *module_bytes, size_t module_size, hsa_agent_t agent,
hsa_status_t (*on_deserialized_data)(void *data, size_t size,
void *cb_state),
void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
hsa_status_t err;
hsa_executable_t executable = {0};
hsa_profile_t agent_profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Query the agent profile", get_error_string(err));
return HSA_STATUS_ERROR;
}
// FIXME: Assume that every profile is FULL until we understand how to build
// GCN with base profile
agent_profile = HSA_PROFILE_FULL;
/* Create the empty executable. */
err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
&executable);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Create the executable", get_error_string(err));
return HSA_STATUS_ERROR;
}
bool module_load_success = false;
do // Existing control flow used continue, preserve that for this patch
{
{
// Some metadata info is not available through ROCr API, so use custom
// code object metadata parsing to collect such metadata info
err = get_code_object_custom_metadata(module_bytes, module_size,
KernelInfoTable);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Getting custom code object metadata", get_error_string(err));
continue;
}
// Deserialize code object.
hsa_code_object_t code_object = {0};
err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
&code_object);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Code Object Deserialization", get_error_string(err));
continue;
}
assert(0 != code_object.handle);
// Mutating the device image here avoids another allocation & memcpy
void *code_object_alloc_data =
reinterpret_cast<void *>(code_object.handle);
hsa_status_t impl_err =
on_deserialized_data(code_object_alloc_data, module_size, cb_state);
if (impl_err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Error in deserialized_data callback",
get_error_string(impl_err));
return impl_err;
}
/* Load the code object. */
err =
hsa_executable_load_code_object(executable, agent, code_object, NULL);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Loading the code object", get_error_string(err));
continue;
}
// cannot iterate over symbols until executable is frozen
}
module_load_success = true;
} while (0);
DP("Modules loaded successful? %d\n", module_load_success);
if (module_load_success) {
/* Freeze the executable; it can now be queried for symbols. */
err = hsa_executable_freeze(executable, "");
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Freeze the executable", get_error_string(err));
return HSA_STATUS_ERROR;
}
err = hsa::executable_iterate_symbols(
executable,
[&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
});
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Iterating over symbols for execuatable", get_error_string(err));
return HSA_STATUS_ERROR;
}
// save the executable and destroy during finalize
HSAExecutables.push_back(executable);
return HSA_STATUS_SUCCESS;
} else {
return HSA_STATUS_ERROR;
}
}
} // namespace core