(This is a big patch, but it's nearly an NFC. No test results have changed and all Fortran tests in the LLVM test suites work as expected.) Allow a parser::Message for a warning to be marked with the common::LanguageFeature or common::UsageWarning that controls it. This will allow a later patch to add hooks whereby a driver will be able to decorate warning messages with the names of its options that enable each particular warning, and to add hooks whereby a driver can map those enumerators by name to command-line options that enable/disable the language feature and enable/disable the messages. The default settings in the constructor for LanguageFeatureControl were moved from its header file into its C++ source file. Hooks for a driver to use to map the name of a feature or warning to its enumerator were also added. To simplify the tagging of warnings with their corresponding language feature or usage warning, to ensure that they are properly controlled by ShouldWarn(), and to ensure that warnings never issue at code sites in module files, two new Warn() member function templates were added to SemanticsContext and other contextual frameworks. Warn() can't be used before source locations can be mapped to scopes, but the bulk of existing code blocks testing ShouldWarn() and FindModuleFile() before calling Say() were convertible into calls to Warn(). The ones that were not convertible were extended with explicit calls to Message::set_languageFeature() and set_usageWarning().
416 lines
17 KiB
C++
416 lines
17 KiB
C++
//===-- lib/Semantics/definable.cpp ---------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "definable.h"
|
|
#include "flang/Evaluate/tools.h"
|
|
#include "flang/Semantics/tools.h"
|
|
|
|
using namespace Fortran::parser::literals;
|
|
|
|
namespace Fortran::semantics {
|
|
|
|
template <typename... A>
|
|
static parser::Message BlameSymbol(parser::CharBlock at,
|
|
const parser::MessageFixedText &text, const Symbol &original, A &&...x) {
|
|
parser::Message message{at, text, original.name(), std::forward<A>(x)...};
|
|
message.set_severity(parser::Severity::Error);
|
|
evaluate::AttachDeclaration(message, original);
|
|
return message;
|
|
}
|
|
|
|
static bool IsPointerDummyOfPureFunction(const Symbol &x) {
|
|
return IsPointerDummy(x) && FindPureProcedureContaining(x.owner()) &&
|
|
x.owner().symbol() && IsFunction(*x.owner().symbol());
|
|
}
|
|
|
|
// See C1594, first paragraph. These conditions enable checks on both
|
|
// left-hand and right-hand sides in various circumstances.
|
|
const char *WhyBaseObjectIsSuspicious(const Symbol &x, const Scope &scope) {
|
|
if (IsHostAssociatedIntoSubprogram(x, scope)) {
|
|
return "host-associated";
|
|
} else if (IsUseAssociated(x, scope)) {
|
|
return "USE-associated";
|
|
} else if (IsPointerDummyOfPureFunction(x)) {
|
|
return "a POINTER dummy argument of a pure function";
|
|
} else if (IsIntentIn(x)) {
|
|
return "an INTENT(IN) dummy argument";
|
|
} else if (FindCommonBlockContaining(x)) {
|
|
return "in a COMMON block";
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Checks C1594(1,2); false if check fails
|
|
static std::optional<parser::Message> CheckDefinabilityInPureScope(
|
|
SourceName at, const Symbol &original, const Symbol &ultimate,
|
|
const Scope &context, const Scope &pure) {
|
|
if (pure.symbol()) {
|
|
if (const char *why{WhyBaseObjectIsSuspicious(ultimate, context)}) {
|
|
return BlameSymbol(at,
|
|
"'%s' may not be defined in pure subprogram '%s' because it is %s"_en_US,
|
|
original, pure.symbol()->name(), why);
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
// True when the object being defined is not a subobject of the base
|
|
// object, e.g. X%PTR = 1., X%PTR%PTR2 => T (but not X%PTR => T).
|
|
// F'2023 9.4.2p5
|
|
static bool DefinesComponentPointerTarget(
|
|
const evaluate::DataRef &dataRef, DefinabilityFlags flags) {
|
|
if (const evaluate::Component *
|
|
component{common::visit(
|
|
common::visitors{
|
|
[](const SymbolRef &) -> const evaluate::Component * {
|
|
return nullptr;
|
|
},
|
|
[](const evaluate::Component &component) { return &component; },
|
|
[](const evaluate::ArrayRef &aRef) {
|
|
return aRef.base().UnwrapComponent();
|
|
},
|
|
[](const evaluate::CoarrayRef &aRef)
|
|
-> const evaluate::Component * { return nullptr; },
|
|
},
|
|
dataRef.u)}) {
|
|
const Symbol &compSym{component->GetLastSymbol()};
|
|
if (IsPointer(compSym) ||
|
|
(flags.test(DefinabilityFlag::AcceptAllocatable) &&
|
|
IsAllocatable(compSym))) {
|
|
if (!flags.test(DefinabilityFlag::PointerDefinition)) {
|
|
return true;
|
|
}
|
|
}
|
|
flags.reset(DefinabilityFlag::PointerDefinition);
|
|
return DefinesComponentPointerTarget(component->base(), flags);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check the leftmost (or only) symbol from a data-ref or expression.
|
|
static std::optional<parser::Message> WhyNotDefinableBase(parser::CharBlock at,
|
|
const Scope &scope, DefinabilityFlags flags, const Symbol &original,
|
|
bool isWholeSymbol, bool isComponentPointerTarget) {
|
|
const Symbol &ultimate{original.GetUltimate()};
|
|
bool isPointerDefinition{flags.test(DefinabilityFlag::PointerDefinition)};
|
|
bool acceptAllocatable{flags.test(DefinabilityFlag::AcceptAllocatable)};
|
|
bool isTargetDefinition{!isPointerDefinition && IsPointer(ultimate)};
|
|
if (const auto *association{ultimate.detailsIf<AssocEntityDetails>()}) {
|
|
if (!IsVariable(association->expr())) {
|
|
return BlameSymbol(at,
|
|
"'%s' is construct associated with an expression"_en_US, original);
|
|
} else if (evaluate::HasVectorSubscript(association->expr().value())) {
|
|
return BlameSymbol(at,
|
|
"Construct association '%s' has a vector subscript"_en_US, original);
|
|
} else if (auto dataRef{evaluate::ExtractDataRef(
|
|
*association->expr(), true, true)}) {
|
|
return WhyNotDefinableBase(at, scope, flags, dataRef->GetFirstSymbol(),
|
|
isWholeSymbol &&
|
|
std::holds_alternative<evaluate::SymbolRef>(dataRef->u),
|
|
isComponentPointerTarget ||
|
|
DefinesComponentPointerTarget(*dataRef, flags));
|
|
}
|
|
}
|
|
if (isTargetDefinition || isComponentPointerTarget) {
|
|
} else if (!isPointerDefinition && !IsVariableName(ultimate)) {
|
|
return BlameSymbol(at, "'%s' is not a variable"_en_US, original);
|
|
} else if (IsProtected(ultimate) && IsUseAssociated(original, scope)) {
|
|
return BlameSymbol(at, "'%s' is protected in this scope"_en_US, original);
|
|
} else if (IsIntentIn(ultimate) &&
|
|
(!IsPointer(ultimate) || (isWholeSymbol && isPointerDefinition))) {
|
|
return BlameSymbol(
|
|
at, "'%s' is an INTENT(IN) dummy argument"_en_US, original);
|
|
} else if (acceptAllocatable && IsAllocatable(ultimate) &&
|
|
!flags.test(DefinabilityFlag::SourcedAllocation)) {
|
|
// allocating a function result doesn't count as a def'n
|
|
// unless there's SOURCE=
|
|
} else if (!flags.test(DefinabilityFlag::DoNotNoteDefinition)) {
|
|
scope.context().NoteDefinedSymbol(ultimate);
|
|
}
|
|
if (const Scope * pure{FindPureProcedureContaining(scope)}) {
|
|
// Additional checking for pure subprograms.
|
|
if (!isTargetDefinition || isComponentPointerTarget) {
|
|
if (auto msg{CheckDefinabilityInPureScope(
|
|
at, original, ultimate, scope, *pure)}) {
|
|
return msg;
|
|
}
|
|
}
|
|
if (const Symbol *
|
|
visible{FindExternallyVisibleObject(
|
|
ultimate, *pure, isPointerDefinition)}) {
|
|
return BlameSymbol(at,
|
|
"'%s' is externally visible via '%s' and not definable in a pure subprogram"_en_US,
|
|
original, visible->name());
|
|
}
|
|
}
|
|
if (const Scope * deviceContext{FindCUDADeviceContext(&scope)}) {
|
|
bool isOwnedByDeviceCode{deviceContext->Contains(ultimate.owner())};
|
|
if (isPointerDefinition && !acceptAllocatable) {
|
|
return BlameSymbol(at,
|
|
"'%s' is a pointer and may not be associated in a device subprogram"_err_en_US,
|
|
original);
|
|
} else if (auto cudaDataAttr{GetCUDADataAttr(&ultimate)}) {
|
|
if (*cudaDataAttr == common::CUDADataAttr::Constant) {
|
|
return BlameSymbol(at,
|
|
"'%s' has ATTRIBUTES(CONSTANT) and is not definable in a device subprogram"_err_en_US,
|
|
original);
|
|
} else if (acceptAllocatable && !isOwnedByDeviceCode) {
|
|
return BlameSymbol(at,
|
|
"'%s' is a host-associated allocatable and is not definable in a device subprogram"_err_en_US,
|
|
original);
|
|
} else if (*cudaDataAttr != common::CUDADataAttr::Device &&
|
|
*cudaDataAttr != common::CUDADataAttr::Managed &&
|
|
*cudaDataAttr != common::CUDADataAttr::Shared) {
|
|
return BlameSymbol(at,
|
|
"'%s' is not device or managed or shared data and is not definable in a device subprogram"_err_en_US,
|
|
original);
|
|
}
|
|
} else if (!isOwnedByDeviceCode) {
|
|
return BlameSymbol(at,
|
|
"'%s' is a host variable and is not definable in a device subprogram"_err_en_US,
|
|
original);
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
static std::optional<parser::Message> WhyNotDefinableLast(parser::CharBlock at,
|
|
const Scope &scope, DefinabilityFlags flags, const Symbol &original) {
|
|
const Symbol &ultimate{original.GetUltimate()};
|
|
if (const auto *association{ultimate.detailsIf<AssocEntityDetails>()};
|
|
association &&
|
|
(association->rank().has_value() ||
|
|
!flags.test(DefinabilityFlag::PointerDefinition))) {
|
|
if (auto dataRef{
|
|
evaluate::ExtractDataRef(*association->expr(), true, true)}) {
|
|
return WhyNotDefinableLast(at, scope, flags, dataRef->GetLastSymbol());
|
|
}
|
|
}
|
|
if (flags.test(DefinabilityFlag::PointerDefinition)) {
|
|
if (flags.test(DefinabilityFlag::AcceptAllocatable)) {
|
|
if (!IsAllocatableOrObjectPointer(&ultimate)) {
|
|
return BlameSymbol(
|
|
at, "'%s' is neither a pointer nor an allocatable"_en_US, original);
|
|
}
|
|
} else if (!IsPointer(ultimate)) {
|
|
return BlameSymbol(at, "'%s' is not a pointer"_en_US, original);
|
|
}
|
|
return std::nullopt; // pointer assignment - skip following checks
|
|
}
|
|
if (IsOrContainsEventOrLockComponent(ultimate)) {
|
|
return BlameSymbol(at,
|
|
"'%s' is an entity with either an EVENT_TYPE or LOCK_TYPE"_en_US,
|
|
original);
|
|
}
|
|
if (FindPureProcedureContaining(scope)) {
|
|
if (auto dyType{evaluate::DynamicType::From(ultimate)}) {
|
|
if (!flags.test(DefinabilityFlag::PolymorphicOkInPure)) {
|
|
if (dyType->IsPolymorphic()) { // C1596
|
|
return BlameSymbol(
|
|
at, "'%s' is polymorphic in a pure subprogram"_en_US, original);
|
|
}
|
|
}
|
|
if (const Symbol * impure{HasImpureFinal(ultimate)}) {
|
|
return BlameSymbol(at, "'%s' has an impure FINAL procedure '%s'"_en_US,
|
|
original, impure->name());
|
|
}
|
|
if (const DerivedTypeSpec * derived{GetDerivedTypeSpec(dyType)}) {
|
|
if (!flags.test(DefinabilityFlag::PolymorphicOkInPure)) {
|
|
if (auto bad{
|
|
FindPolymorphicAllocatablePotentialComponent(*derived)}) {
|
|
return BlameSymbol(at,
|
|
"'%s' has polymorphic component '%s' in a pure subprogram"_en_US,
|
|
original, bad.BuildResultDesignatorName());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Checks a data-ref
|
|
static std::optional<parser::Message> WhyNotDefinable(parser::CharBlock at,
|
|
const Scope &scope, DefinabilityFlags flags,
|
|
const evaluate::DataRef &dataRef) {
|
|
auto whyNotBase{
|
|
WhyNotDefinableBase(at, scope, flags, dataRef.GetFirstSymbol(),
|
|
std::holds_alternative<evaluate::SymbolRef>(dataRef.u),
|
|
DefinesComponentPointerTarget(dataRef, flags))};
|
|
if (!whyNotBase || !whyNotBase->IsFatal()) {
|
|
if (auto whyNotLast{
|
|
WhyNotDefinableLast(at, scope, flags, dataRef.GetLastSymbol())}) {
|
|
if (whyNotLast->IsFatal() || !whyNotBase) {
|
|
return whyNotLast;
|
|
}
|
|
}
|
|
}
|
|
return whyNotBase;
|
|
}
|
|
|
|
std::optional<parser::Message> WhyNotDefinable(parser::CharBlock at,
|
|
const Scope &scope, DefinabilityFlags flags, const Symbol &original) {
|
|
auto whyNotBase{WhyNotDefinableBase(at, scope, flags, original,
|
|
/*isWholeSymbol=*/true, /*isComponentPointerTarget=*/false)};
|
|
if (!whyNotBase || !whyNotBase->IsFatal()) {
|
|
if (auto whyNotLast{WhyNotDefinableLast(at, scope, flags, original)}) {
|
|
if (whyNotLast->IsFatal() || !whyNotBase) {
|
|
return whyNotLast;
|
|
}
|
|
}
|
|
}
|
|
return whyNotBase;
|
|
}
|
|
|
|
class DuplicatedSubscriptFinder
|
|
: public evaluate::AnyTraverse<DuplicatedSubscriptFinder, bool> {
|
|
using Base = evaluate::AnyTraverse<DuplicatedSubscriptFinder, bool>;
|
|
|
|
public:
|
|
explicit DuplicatedSubscriptFinder(evaluate::FoldingContext &foldingContext)
|
|
: Base{*this}, foldingContext_{foldingContext} {}
|
|
using Base::operator();
|
|
bool operator()(const evaluate::ActualArgument &) {
|
|
return false; // don't descend into argument expressions
|
|
}
|
|
bool operator()(const evaluate::ArrayRef &aRef) {
|
|
bool anyVector{false};
|
|
for (const auto &ss : aRef.subscript()) {
|
|
if (ss.Rank() > 0) {
|
|
anyVector = true;
|
|
if (const auto *vecExpr{
|
|
std::get_if<evaluate::IndirectSubscriptIntegerExpr>(&ss.u)}) {
|
|
auto folded{evaluate::Fold(foldingContext_,
|
|
evaluate::Expr<evaluate::SubscriptInteger>{vecExpr->value()})};
|
|
if (const auto *con{
|
|
evaluate::UnwrapConstantValue<evaluate::SubscriptInteger>(
|
|
folded)}) {
|
|
std::set<std::int64_t> values;
|
|
for (const auto &j : con->values()) {
|
|
if (auto pair{values.emplace(j.ToInt64())}; !pair.second) {
|
|
return true; // duplicate
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return anyVector ? false : (*this)(aRef.base());
|
|
}
|
|
|
|
private:
|
|
evaluate::FoldingContext &foldingContext_;
|
|
};
|
|
|
|
std::optional<parser::Message> WhyNotDefinable(parser::CharBlock at,
|
|
const Scope &scope, DefinabilityFlags flags,
|
|
const evaluate::Expr<evaluate::SomeType> &expr) {
|
|
std::optional<parser::Message> portabilityWarning;
|
|
if (auto dataRef{evaluate::ExtractDataRef(expr, true, true)}) {
|
|
if (evaluate::HasVectorSubscript(expr)) {
|
|
if (flags.test(DefinabilityFlag::VectorSubscriptIsOk)) {
|
|
if (auto type{expr.GetType()}) {
|
|
if (!type->IsUnlimitedPolymorphic() &&
|
|
type->category() == TypeCategory::Derived) {
|
|
// Seek the FINAL subroutine that should but cannot be called
|
|
// for this definition of an array with a vector-valued subscript.
|
|
// If there's an elemental FINAL subroutine, all is well; otherwise,
|
|
// if there is a FINAL subroutine with a matching or assumed rank
|
|
// dummy argument, there's no way to call it.
|
|
int rank{expr.Rank()};
|
|
const DerivedTypeSpec *spec{&type->GetDerivedTypeSpec()};
|
|
while (spec) {
|
|
bool anyElemental{false};
|
|
const Symbol *anyRankMatch{nullptr};
|
|
for (auto ref : FinalsForDerivedTypeInstantiation(*spec)) {
|
|
const Symbol &ultimate{ref->GetUltimate()};
|
|
anyElemental |= ultimate.attrs().test(Attr::ELEMENTAL);
|
|
if (const auto *subp{ultimate.detailsIf<SubprogramDetails>()}) {
|
|
if (!subp->dummyArgs().empty()) {
|
|
if (const Symbol * arg{subp->dummyArgs()[0]}) {
|
|
const auto *object{arg->detailsIf<ObjectEntityDetails>()};
|
|
if (arg->Rank() == rank ||
|
|
(object && object->IsAssumedRank())) {
|
|
anyRankMatch = &*ref;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (anyRankMatch && !anyElemental) {
|
|
if (!portabilityWarning &&
|
|
scope.context().languageFeatures().ShouldWarn(
|
|
common::UsageWarning::VectorSubscriptFinalization)) {
|
|
portabilityWarning = parser::Message{
|
|
common::UsageWarning::VectorSubscriptFinalization, at,
|
|
"Variable '%s' has a vector subscript and will be finalized by non-elemental subroutine '%s'"_port_en_US,
|
|
expr.AsFortran(), anyRankMatch->name()};
|
|
}
|
|
break;
|
|
}
|
|
const auto *parent{FindParentTypeSpec(*spec)};
|
|
spec = parent ? parent->AsDerived() : nullptr;
|
|
}
|
|
}
|
|
}
|
|
if (!flags.test(DefinabilityFlag::DuplicatesAreOk) &&
|
|
DuplicatedSubscriptFinder{scope.context().foldingContext()}(expr)) {
|
|
return parser::Message{at,
|
|
"Variable has a vector subscript with a duplicated element"_err_en_US};
|
|
}
|
|
} else {
|
|
return parser::Message{at,
|
|
"Variable '%s' has a vector subscript"_err_en_US, expr.AsFortran()};
|
|
}
|
|
}
|
|
if (FindPureProcedureContaining(scope) &&
|
|
evaluate::ExtractCoarrayRef(expr)) {
|
|
return parser::Message(at,
|
|
"A pure subprogram may not define the coindexed object '%s'"_err_en_US,
|
|
expr.AsFortran());
|
|
}
|
|
if (auto whyNotDataRef{WhyNotDefinable(at, scope, flags, *dataRef)}) {
|
|
return whyNotDataRef;
|
|
}
|
|
} else if (evaluate::IsNullPointer(expr)) {
|
|
return parser::Message{
|
|
at, "'%s' is a null pointer"_err_en_US, expr.AsFortran()};
|
|
} else if (flags.test(DefinabilityFlag::PointerDefinition)) {
|
|
if (const auto *procDesignator{
|
|
std::get_if<evaluate::ProcedureDesignator>(&expr.u)}) {
|
|
// Defining a procedure pointer
|
|
if (const Symbol * procSym{procDesignator->GetSymbol()}) {
|
|
if (evaluate::ExtractCoarrayRef(expr)) { // C1027
|
|
return BlameSymbol(at,
|
|
"Procedure pointer '%s' may not be a coindexed object"_err_en_US,
|
|
*procSym, expr.AsFortran());
|
|
}
|
|
if (const auto *component{procDesignator->GetComponent()}) {
|
|
flags.reset(DefinabilityFlag::PointerDefinition);
|
|
return WhyNotDefinableBase(at, scope, flags,
|
|
component->base().GetFirstSymbol(), false,
|
|
DefinesComponentPointerTarget(component->base(), flags));
|
|
} else {
|
|
return WhyNotDefinable(at, scope, flags, *procSym);
|
|
}
|
|
}
|
|
}
|
|
return parser::Message{
|
|
at, "'%s' is not a definable pointer"_err_en_US, expr.AsFortran()};
|
|
} else if (!evaluate::IsVariable(expr)) {
|
|
return parser::Message{
|
|
at, "'%s' is not a variable or pointer"_err_en_US, expr.AsFortran()};
|
|
}
|
|
return portabilityWarning;
|
|
}
|
|
|
|
} // namespace Fortran::semantics
|