Add a new helper function `isReachable` to `Block`. This function traverses all successors of a block to determine if another block is reachable from the current block. This functionality has been reimplemented in multiple places in MLIR. Possibly additional copies in downstream projects. Therefore, moving it to a common place.
1389 lines
56 KiB
C++
1389 lines
56 KiB
C++
//===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// One-Shot Analysis analyzes function bodies. By default, function boundaries
|
|
// (FuncOp bbArgs, CallOps, ReturnOps) are treated as "unknown" ops.
|
|
// OneShotModuleBufferization.cpp is an extension of One-Shot Analysis for
|
|
// simple call graphs without loops.
|
|
//
|
|
// One-Shot Bufferize consists of three phases.
|
|
//
|
|
// 1. Analyze ops to decide which OpOperands can bufferize inplace, i.e.,
|
|
// without inserting buffer copies. The analysis queries op bufferization
|
|
// semantics via `BufferizableOpInterface`.
|
|
// 2. Insert copies for OpOperands that were decided to bufferize out-of-place
|
|
// in tensor land during `TensorCopyInsertion`.
|
|
// 3. Bufferize ops by calling `BufferizableOpInterface::bufferize`.
|
|
//
|
|
// This file contains only the analysis. For convenience, this file also
|
|
// contains a helper function `runOneShotBufferize` that analyzes an op (and its
|
|
// nested ops) and then bufferizes it.
|
|
//
|
|
// Inplace bufferization decisions are passed from the analysis to the
|
|
// `TensorCopyInsertion` phase via `AnalysisState`. They can be printed for
|
|
// debugging purposes with `testAnalysisOnly`.
|
|
//
|
|
// Ops that do not implement `BufferizableOpInterface` can be analyzed but are
|
|
// treated conservatively. E.g., the analysis has to assume that their tensor
|
|
// OpOperands bufferize to memory writes. While such ops can be analyzed, they
|
|
// are not bufferized and remain in the IR. to_tensor and to_memref ops are
|
|
// inserted at the bufferization boundary.
|
|
//
|
|
// This analysis caters to high-performance codegen where buffer reuse is deemed
|
|
// critical: the analysis should fail if the bufferized form of the function
|
|
// needs to return a buffer, unless `allowReturnAllocs` is enabled.
|
|
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
|
|
#include <optional>
|
|
#include <random>
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/AsmState.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/IR/Iterators.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Interfaces/ControlFlowInterfaces.h"
|
|
#include "mlir/Interfaces/SubsetOpInterface.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
|
|
MLIR_DEFINE_EXPLICIT_TYPE_ID(mlir::bufferization::OneShotAnalysisState)
|
|
|
|
// Run mlir-opt with `-debug-only="one-shot-analysis"` for detailed debug
|
|
// output.
|
|
#define DEBUG_TYPE "one-shot-analysis"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
static bool isaTensor(Type t) { return isa<TensorType>(t); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bufferization-specific attribute manipulation.
|
|
// These are for testing and debugging only. Bufferization information is stored
|
|
// in OneShotBufferizationState. When run with `testAnalysisOnly`, the IR is
|
|
// annotated with the results of the analysis, so that they can be checked in
|
|
// tests.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Attribute marker to specify op operands that bufferize in-place.
|
|
constexpr StringLiteral kInPlaceOperandsAttrName = "__inplace_operands_attr__";
|
|
|
|
constexpr StringLiteral kOpResultAliasSetAttrName =
|
|
"__opresult_alias_set_attr__";
|
|
|
|
constexpr StringLiteral kBbArgAliasSetAttrName = "__bbarg_alias_set_attr__";
|
|
|
|
/// Mark whether OpOperand will be bufferized inplace.
|
|
static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) {
|
|
Operation *op = opOperand.getOwner();
|
|
SmallVector<StringRef> inPlaceVector;
|
|
if (auto attr = op->getAttr(kInPlaceOperandsAttrName)) {
|
|
inPlaceVector = SmallVector<StringRef>(llvm::to_vector<4>(
|
|
cast<ArrayAttr>(attr).getAsValueRange<StringAttr>()));
|
|
} else {
|
|
inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none");
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (isa<TensorType>(opOperand.get().getType()))
|
|
inPlaceVector[opOperand.getOperandNumber()] = "false";
|
|
}
|
|
inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false";
|
|
op->setAttr(kInPlaceOperandsAttrName,
|
|
OpBuilder(op).getStrArrayAttr(inPlaceVector));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OneShotAnalysisState
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OneShotAnalysisState::OneShotAnalysisState(
|
|
Operation *op, const OneShotBufferizationOptions &options)
|
|
: AnalysisState(options, TypeID::get<OneShotAnalysisState>()) {
|
|
// Set up alias sets.
|
|
op->walk([&](Operation *op) {
|
|
for (Value v : op->getResults())
|
|
if (isa<TensorType>(v.getType()))
|
|
createAliasInfoEntry(v);
|
|
for (Region &r : op->getRegions())
|
|
for (Block &b : r.getBlocks())
|
|
for (auto bbArg : b.getArguments())
|
|
if (isa<TensorType>(bbArg.getType()))
|
|
createAliasInfoEntry(bbArg);
|
|
});
|
|
|
|
// Mark OpOperands in-place that must bufferize in-place.
|
|
op->walk([&](BufferizableOpInterface bufferizableOp) {
|
|
if (!options.isOpAllowed(bufferizableOp))
|
|
return WalkResult::skip();
|
|
for (OpOperand &opOperand : bufferizableOp->getOpOperands())
|
|
if (isa<TensorType>(opOperand.get().getType()))
|
|
if (bufferizableOp.mustBufferizeInPlace(opOperand, *this))
|
|
bufferizeInPlace(opOperand);
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
void OneShotAnalysisState::applyOnEquivalenceClass(
|
|
Value v, function_ref<void(Value)> fun) const {
|
|
auto leaderIt = equivalentInfo.findLeader(v);
|
|
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
|
|
++mit) {
|
|
fun(*mit);
|
|
}
|
|
}
|
|
|
|
void OneShotAnalysisState::applyOnAliases(Value v,
|
|
function_ref<void(Value)> fun) const {
|
|
auto leaderIt = aliasInfo.findLeader(v);
|
|
for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) {
|
|
fun(*mit);
|
|
}
|
|
}
|
|
|
|
bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1,
|
|
Value v2) const {
|
|
return equivalentInfo.isEquivalent(v1, v2);
|
|
}
|
|
|
|
bool OneShotAnalysisState::areAliasingBufferizedValues(Value v1,
|
|
Value v2) const {
|
|
return aliasInfo.isEquivalent(v1, v2);
|
|
}
|
|
|
|
void OneShotAnalysisState::bufferizeInPlace(OpOperand &operand) {
|
|
if (inplaceBufferized.contains(&operand))
|
|
return;
|
|
inplaceBufferized.insert(&operand);
|
|
for (AliasingValue alias : getAliasingValues(operand))
|
|
aliasInfo.unionSets(alias.value, operand.get());
|
|
++statNumTensorInPlace;
|
|
}
|
|
|
|
void OneShotAnalysisState::bufferizeOutOfPlace(OpOperand &operand) {
|
|
assert(!inplaceBufferized.contains(&operand) &&
|
|
"OpOperand was already decided to bufferize inplace");
|
|
++statNumTensorOutOfPlace;
|
|
}
|
|
|
|
void OneShotAnalysisState::createAliasInfoEntry(Value v) {
|
|
aliasInfo.insert(v);
|
|
equivalentInfo.insert(v);
|
|
}
|
|
|
|
void OneShotAnalysisState::gatherUndefinedTensorUses(Operation *op) {
|
|
op->walk([&](Operation *op) {
|
|
// Skip unknown ops.
|
|
auto bufferizableOp = getOptions().dynCastBufferizableOp(op);
|
|
if (!bufferizableOp)
|
|
return WalkResult::skip();
|
|
|
|
// Check all tensor OpResults.
|
|
for (OpResult opResult : op->getOpResults()) {
|
|
if (!isa<TensorType>(opResult.getType()))
|
|
continue;
|
|
|
|
// If there is no preceding definition, the tensor contents are
|
|
// undefined.
|
|
if (findDefinitionsCached(opResult).empty())
|
|
for (OpOperand &use : opResult.getUses())
|
|
undefinedTensorUses.insert(&use);
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
bool OneShotAnalysisState::hasUndefinedContents(OpOperand *opOperand) const {
|
|
return undefinedTensorUses.contains(opOperand);
|
|
}
|
|
|
|
bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const {
|
|
return inplaceBufferized.contains(&opOperand);
|
|
}
|
|
|
|
bool OneShotAnalysisState::isValueWritten(Value value) const {
|
|
bool isWritten = false;
|
|
applyOnAliases(value, [&](Value val) {
|
|
for (OpOperand &use : val.getUses())
|
|
if (isInPlace(use) && bufferizesToMemoryWrite(use))
|
|
isWritten = true;
|
|
});
|
|
return isWritten;
|
|
}
|
|
|
|
bool OneShotAnalysisState::isWritable(Value value) const {
|
|
// TODO: Out-of-place bufferized value could be considered writable.
|
|
// Query BufferizableOpInterface to see if the BlockArgument is writable.
|
|
if (auto bufferizableOp =
|
|
getOptions().dynCastBufferizableOp(getOwnerOfValue(value)))
|
|
return bufferizableOp.isWritable(value, *this);
|
|
|
|
// Not a bufferizable op: The conservative answer is "not writable".
|
|
return false;
|
|
}
|
|
|
|
void OneShotAnalysisState::unionAliasSets(Value v1, Value v2) {
|
|
aliasInfo.unionSets(v1, v2);
|
|
}
|
|
|
|
void OneShotAnalysisState::unionEquivalenceClasses(Value v1, Value v2) {
|
|
equivalentInfo.unionSets(v1, v2);
|
|
}
|
|
|
|
OneShotAnalysisState::Extension::~Extension() = default;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bufferization-specific alias analysis.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return true if opOperand has been decided to bufferize in-place.
|
|
static bool isInplaceMemoryWrite(OpOperand &opOperand,
|
|
const OneShotAnalysisState &state) {
|
|
// OpOperands that do not bufferize to a memory write do not write in-place.
|
|
if (!state.bufferizesToMemoryWrite(opOperand))
|
|
return false;
|
|
// Check current bufferization decisions.
|
|
return state.isInPlace(opOperand);
|
|
}
|
|
|
|
/// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors
|
|
/// properly dominates `b` and `b` is not inside `a`.
|
|
static bool happensBefore(Operation *a, Operation *b,
|
|
const DominanceInfo &domInfo) {
|
|
do {
|
|
// TODO: Instead of isProperAncestor + properlyDominates, we should use
|
|
// properlyDominatesImpl(a, b, /*enclosingOpOk=*/false)
|
|
if (a->isProperAncestor(b))
|
|
return false;
|
|
if (domInfo.properlyDominates(a, b))
|
|
return true;
|
|
} while ((a = a->getParentOp()));
|
|
return false;
|
|
}
|
|
|
|
/// Return `true` if op dominance can be used to rule out a read-after-write
|
|
/// conflicts based on the ordering of ops. Returns `false` if op dominance
|
|
/// cannot be used to due region-based loops.
|
|
///
|
|
/// Generalized op dominance can often be used to rule out potential conflicts
|
|
/// due to "read happens before write". E.g., the following IR is not a RaW
|
|
/// conflict because the read happens *before* the write.
|
|
///
|
|
/// Example 1:
|
|
/// %0 = ... : tensor<?xf32> // DEF
|
|
/// "reading_op"(%0) : tensor<?xf32> // READ
|
|
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> // WRITE
|
|
///
|
|
/// This is no longer true inside loops (or repetitive regions). In such cases,
|
|
/// there may not be a meaningful `happensBefore` relationship because ops
|
|
/// could be executed multiple times. E.g.:
|
|
///
|
|
/// Example 2:
|
|
/// %0 = ... : tensor<?xf32> // DEF
|
|
/// scf.for ... {
|
|
/// "reading_op"(%0) : tensor<?xf32> // READ
|
|
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> // WRITE
|
|
/// ...
|
|
/// }
|
|
///
|
|
/// In the above example, reading_op happens before writing_op according to
|
|
/// op dominance. However, both ops may happen multiple times; in
|
|
/// particular, the second execution of reading_op happens after the first
|
|
/// execution of writing_op. This is problematic because the tensor %0 they
|
|
/// operate on (i.e., the "definition") is defined outside of the loop.
|
|
///
|
|
/// On a high-level, there is a potential RaW in a program if there exists a
|
|
/// possible program execution such that there is a sequence of DEF, followed
|
|
/// by WRITE, followed by READ. Each additional DEF resets the sequence.
|
|
///
|
|
/// E.g.:
|
|
/// No conflict: DEF, WRITE, DEF, READ
|
|
/// Potential conflict: DEF, READ, WRITE, READ, WRITE
|
|
///
|
|
/// Example 1 has no conflict: DEF, READ, WRITE
|
|
/// Example 2 has a potential conflict: DEF, (READ, WRITE)*
|
|
//
|
|
/// Example 3:
|
|
/// scf.for ... {
|
|
/// %0 = ... : tensor<?xf32>
|
|
/// "reading_op"(%0) : tensor<?xf32>
|
|
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
|
|
/// ...
|
|
/// }
|
|
/// This has no conflict: (DEF, READ, WRITE)*
|
|
///
|
|
/// Example 4:
|
|
/// %0 = ... : tensor<?xf32>
|
|
/// scf.for ... {
|
|
/// scf.for ... { "reading_op"(%0) }
|
|
/// %1 = "writing_op"(%0)
|
|
/// }
|
|
/// This has a potential conflict: DEF, ((READ)*, WRITE)*
|
|
///
|
|
/// Example 5:
|
|
/// %0 = ... : tensor<?xf32>
|
|
/// scf.for ... { %1 = "writing_op"(%0) }
|
|
/// scf.for ... { "reading_op"(%0) }
|
|
/// This has a potential conflict: DEF, WRITE*, READ*
|
|
///
|
|
/// The following rules are used to rule out RaW conflicts via ordering of ops:
|
|
///
|
|
/// 1. If the closest enclosing repetitive region of DEF is a proper ancestor of
|
|
/// a repetitive region that enclosing both READ and WRITE, we cannot rule
|
|
/// out RaW conflict due to the ordering of ops.
|
|
/// 2. Otherwise: There are no loops that interfere with our analysis; for
|
|
/// analysis purposes, we can assume that there are no loops/repetitive
|
|
/// regions. I.e., we can rule out a RaW conflict if READ happensBefore WRITE
|
|
/// or WRITE happensBefore DEF. (Checked in `hasReadAfterWriteInterference`.)
|
|
///
|
|
static bool canUseOpDominanceDueToRegions(OpOperand *uRead, OpOperand *uWrite,
|
|
const SetVector<Value> &definitions,
|
|
AnalysisState &state) {
|
|
const BufferizationOptions &options = state.getOptions();
|
|
for (Value def : definitions) {
|
|
Region *rRead =
|
|
state.getEnclosingRepetitiveRegion(uRead->getOwner(), options);
|
|
Region *rDef = state.getEnclosingRepetitiveRegion(def, options);
|
|
|
|
// READ and DEF are in the same repetitive region. `happensBefore` can be
|
|
// used to rule out RaW conflicts due to op ordering.
|
|
if (rRead == rDef)
|
|
continue;
|
|
|
|
// Find the enclosing repetitive region of READ that is closest to DEF but
|
|
// not the repetitive region of DEF itself.
|
|
while (true) {
|
|
Region *nextRegion = getNextEnclosingRepetitiveRegion(rRead, options);
|
|
if (nextRegion == rDef)
|
|
break;
|
|
assert(nextRegion && "expected to find another repetitive region");
|
|
rRead = nextRegion;
|
|
}
|
|
|
|
// We cannot use op dominance if WRITE is inside the same repetitive region.
|
|
if (rRead->getParentOp()->isAncestor(uWrite->getOwner()))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return `true` if op dominance can be used to rule out a read-after-write
|
|
/// conflicts based on the ordering of ops. Returns `false` if op dominance
|
|
/// cannot be used to due block-based loops within a region.
|
|
///
|
|
/// Refer to the `canUseOpDominanceDueToRegions` documentation for details on
|
|
/// how op domiance is used during RaW conflict detection.
|
|
///
|
|
/// On a high-level, there is a potential RaW in a program if there exists a
|
|
/// possible program execution such that there is a sequence of DEF, followed
|
|
/// by WRITE, followed by READ. Each additional DEF resets the sequence.
|
|
///
|
|
/// Op dominance cannot be used if there is a path from block(READ) to
|
|
/// block(WRITE) and a path from block(WRITE) to block(READ). block(DEF) should
|
|
/// not appear on that path.
|
|
static bool canUseOpDominanceDueToBlocks(OpOperand *uRead, OpOperand *uWrite,
|
|
const SetVector<Value> &definitions,
|
|
AnalysisState &state) {
|
|
// Fast path: If READ and WRITE are in different regions, their block cannot
|
|
// be reachable just via unstructured control flow. (Loops due to regions are
|
|
// covered by `canUseOpDominanceDueToRegions`.)
|
|
if (uRead->getOwner()->getParentRegion() !=
|
|
uWrite->getOwner()->getParentRegion())
|
|
return true;
|
|
|
|
Block *readBlock = uRead->getOwner()->getBlock();
|
|
Block *writeBlock = uWrite->getOwner()->getBlock();
|
|
for (Value def : definitions) {
|
|
Block *defBlock = def.getParentBlock();
|
|
if (readBlock->isReachable(writeBlock, {defBlock}) &&
|
|
writeBlock->isReachable(readBlock, {defBlock}))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool canUseOpDominance(OpOperand *uRead, OpOperand *uWrite,
|
|
const SetVector<Value> &definitions,
|
|
AnalysisState &state) {
|
|
return canUseOpDominanceDueToRegions(uRead, uWrite, definitions, state) &&
|
|
canUseOpDominanceDueToBlocks(uRead, uWrite, definitions, state);
|
|
}
|
|
|
|
/// Annotate IR with details about the detected RaW conflict.
|
|
static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite,
|
|
Value definition) {
|
|
static uint64_t counter = 0;
|
|
Operation *readingOp = uRead->getOwner();
|
|
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
|
|
|
|
OpBuilder b(conflictingWritingOp->getContext());
|
|
std::string id = "C_" + std::to_string(counter++);
|
|
|
|
std::string conflictingWriteAttr =
|
|
id +
|
|
"[CONFL-WRITE: " + std::to_string(uConflictingWrite->getOperandNumber()) +
|
|
"]";
|
|
conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr());
|
|
|
|
std::string readAttr =
|
|
id + "[READ: " + std::to_string(uRead->getOperandNumber()) + "]";
|
|
readingOp->setAttr(readAttr, b.getUnitAttr());
|
|
|
|
if (auto opResult = dyn_cast<OpResult>(definition)) {
|
|
std::string defAttr =
|
|
id + "[DEF: result " + std::to_string(opResult.getResultNumber()) + "]";
|
|
opResult.getDefiningOp()->setAttr(defAttr, b.getUnitAttr());
|
|
} else {
|
|
auto bbArg = cast<BlockArgument>(definition);
|
|
std::string defAttr =
|
|
id + "[DEF: bbArg " + std::to_string(bbArg.getArgNumber()) + "]";
|
|
bbArg.getOwner()->getParentOp()->setAttr(defAttr, b.getUnitAttr());
|
|
}
|
|
}
|
|
|
|
/// Return 'true' if a tensor that is equivalent to `other` can be found in the
|
|
/// reverse use-def chain of `start`. Note: If an OpOperand bufferizes out of
|
|
/// place along that use-def chain, the two tensors may not materialize as
|
|
/// equivalent buffers (but separate allocations).
|
|
///
|
|
/// Note: This function also requires that the two tensors have equivalent
|
|
/// indexing. I.e., the tensor types do not change along the use-def chain,
|
|
/// apart from static <-> dynamic dim casts.
|
|
static bool hasEquivalentValueInReverseUseDefChain(AnalysisState &state,
|
|
Value start, Value other) {
|
|
TraversalConfig config;
|
|
config.followEquivalentOnly = true;
|
|
config.alwaysIncludeLeaves = false;
|
|
config.followSameTypeOrCastsOnly = true;
|
|
return !state
|
|
.findValueInReverseUseDefChain(
|
|
start, [&](Value v) { return v == other; }, config)
|
|
.empty();
|
|
}
|
|
|
|
/// Return "true" if `value` is originating from a subset that is equivalent to
|
|
/// the subset that `subsetOp` inserts into.
|
|
static bool matchesInsertDestination(const AnalysisState &state, Value value,
|
|
SubsetInsertionOpInterface subsetOp) {
|
|
auto matchingSubset = [&](Value val) {
|
|
if (auto opResult = dyn_cast<OpResult>(val))
|
|
if (subsetOp.isEquivalentSubset(opResult, [&](Value v1, Value v2) {
|
|
return state.areEquivalentBufferizedValues(v1, v2);
|
|
}))
|
|
return true;
|
|
return false;
|
|
};
|
|
// There may be multiple leaves at which the reverse SSA use-def chain lookup
|
|
// terminates. All of them must be equivalent subsets.
|
|
SetVector<Value> backwardSlice =
|
|
state.findValueInReverseUseDefChain(value, matchingSubset);
|
|
return static_cast<bool>(llvm::all_of(backwardSlice, matchingSubset));
|
|
}
|
|
|
|
/// Return "true" if the given "read" and potentially conflicting "write" are
|
|
/// not conflicting due to their subset relationship. The comments in this
|
|
/// function are expressed in terms of tensor.extract_slice/tensor.insert_slice
|
|
/// pairs, but apply to any subset ops that implement the
|
|
/// `SubsetInsertionOpInterface`.
|
|
static bool areNonConflictingSubsets(OpOperand *uRead,
|
|
OpOperand *uConflictingWrite,
|
|
const AnalysisState &state) {
|
|
Operation *readingOp = uRead->getOwner();
|
|
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
|
|
|
|
// Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If
|
|
// uRead is an InsertSliceOp...
|
|
if (auto subsetOp = dyn_cast<SubsetInsertionOpInterface>(readingOp)) {
|
|
// As an example, consider the following IR.
|
|
//
|
|
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
|
|
// %1 = linalg.fill %cst, %0 {inplace= [true] }
|
|
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
|
|
// {inplace= [true] }
|
|
|
|
if (uRead == &subsetOp.getDestinationOperand() &&
|
|
matchesInsertDestination(state, uConflictingWrite->get(), subsetOp))
|
|
// Case 1: The main insight is that InsertSliceOp reads only part of
|
|
// the destination tensor. The overwritten area is not read. If
|
|
// uConflictingWrite writes into exactly the memory location that is
|
|
// being read by uRead, this is not a conflict.
|
|
//
|
|
// In the above example:
|
|
// uRead = OpOperand 1 (%t) of tensor.insert_slice
|
|
// uConflictingWrite = OpOperand 1 (%0) of linalg.fill
|
|
//
|
|
// The read of %t does not conflict with the write of the FillOp
|
|
// (same aliases!) because the area that the FillOp operates on is
|
|
// exactly the one that is *not* read via %t.
|
|
return true;
|
|
|
|
if (uRead == &subsetOp.getSourceOperand() &&
|
|
uConflictingWrite == &subsetOp.getDestinationOperand() &&
|
|
matchesInsertDestination(state, uRead->get(), subsetOp))
|
|
// Case 2: The read of the source tensor and the write to the dest
|
|
// tensor via an InsertSliceOp is not a conflict if the read is
|
|
// reading exactly that part of an equivalent tensor that the
|
|
// InsertSliceOp is writing.
|
|
//
|
|
// In the above example:
|
|
// uRead = OpOperand 0 (%1) of tensor.insert_slice
|
|
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
|
|
return true;
|
|
}
|
|
|
|
// If uConflictingWrite is an InsertSliceOp...
|
|
if (auto subsetOp =
|
|
dyn_cast<SubsetInsertionOpInterface>(conflictingWritingOp))
|
|
// As an example, consider the following IR.
|
|
//
|
|
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
|
|
// %1 = linalg.fill %cst, %0 {inplace= [true] }
|
|
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
|
|
// {inplace= [true] }
|
|
// %3 = vector.transfer_read %1, %cst
|
|
//
|
|
// In the above example:
|
|
// uRead = OpOperand 0 (%1) of vector.transfer_read
|
|
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
|
|
// definition = %1
|
|
//
|
|
// This is not a conflict because the InsertSliceOp overwrites the
|
|
// memory segment of %1 with the exact same data. (Effectively, there
|
|
// is no memory write here.)
|
|
if (uConflictingWrite == &subsetOp.getDestinationOperand() &&
|
|
state.areEquivalentBufferizedValues(
|
|
uRead->get(), subsetOp.getSourceOperand().get()) &&
|
|
matchesInsertDestination(state, subsetOp.getSourceOperand().get(),
|
|
subsetOp))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Given sets of uses and writes, return true if there is a RaW conflict under
|
|
/// the assumption that all given reads/writes alias the same buffer and that
|
|
/// all given writes bufferize inplace.
|
|
///
|
|
/// A conflict is: According to SSA use-def chains, a read R is supposed to read
|
|
/// the result of a definition W1. But because of bufferization decisions, R
|
|
/// actually reads another definition W2.
|
|
static bool
|
|
hasReadAfterWriteInterference(const DenseSet<OpOperand *> &usesRead,
|
|
const DenseSet<OpOperand *> &usesWrite,
|
|
const DominanceInfo &domInfo,
|
|
OneShotAnalysisState &state) {
|
|
const BufferizationOptions &options = state.getOptions();
|
|
|
|
// Before going through the main RaW analysis, find cases where a buffer must
|
|
// be privatized due to parallelism. If the result of a write is never read,
|
|
// privatization is not necessary (and large parts of the IR are likely dead).
|
|
if (options.checkParallelRegions && !usesRead.empty()) {
|
|
for (OpOperand *uConflictingWrite : usesWrite) {
|
|
// Find the allocation point or last write (definition) of the buffer.
|
|
// Note: In contrast to `findDefinitions`, this also returns results of
|
|
// ops that do not bufferize to memory write when no other definition
|
|
// could be found. E.g., "bufferization.alloc_tensor" would be included,
|
|
// even though that op just bufferizes to an allocation but does define
|
|
// the contents of the buffer.
|
|
SetVector<Value> definitionsOrLeaves =
|
|
state.findValueInReverseUseDefChain(
|
|
uConflictingWrite->get(),
|
|
[&](Value v) { return state.bufferizesToMemoryWrite(v); });
|
|
assert(!definitionsOrLeaves.empty() &&
|
|
"expected at least one definition or leaf");
|
|
|
|
// The writing op must bufferize out-of-place if the definition is in a
|
|
// different parallel region than this write.
|
|
for (Value def : definitionsOrLeaves) {
|
|
if (getParallelRegion(def.getParentRegion(), options) !=
|
|
getParallelRegion(uConflictingWrite->getOwner()->getParentRegion(),
|
|
options)) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "\n- bufferizes out-of-place due to parallel region:\n");
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " unConflictingWrite = operand "
|
|
<< uConflictingWrite->getOperandNumber() << " of "
|
|
<< *uConflictingWrite->getOwner() << "\n");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (OpOperand *uRead : usesRead) {
|
|
Operation *readingOp = uRead->getOwner();
|
|
LLVM_DEBUG(llvm::dbgs() << "\n- check conflict:\n");
|
|
LLVM_DEBUG(llvm::dbgs() << " uRead = operand " << uRead->getOperandNumber()
|
|
<< " of " << *readingOp << "\n");
|
|
|
|
// Find the definition of uRead by following the SSA use-def chain.
|
|
// E.g.:
|
|
//
|
|
// %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32>
|
|
// %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32>
|
|
// %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type
|
|
//
|
|
// In the above example, if uRead is the OpOperand of reading_op, the
|
|
// definition is %0. Note that operations that create an alias but do not
|
|
// bufferize to a memory write (such as ExtractSliceOp) are skipped.
|
|
const SetVector<Value> &definitions =
|
|
state.findDefinitionsCached(uRead->get());
|
|
if (definitions.empty()) {
|
|
// Fast path: No conflict if there are no definitions.
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " no conflict: read value has no definitions\n");
|
|
continue;
|
|
}
|
|
|
|
// Look for conflicting memory writes. Potential conflicts are writes to an
|
|
// alias that have been decided to bufferize inplace.
|
|
for (OpOperand *uConflictingWrite : usesWrite) {
|
|
LLVM_DEBUG(llvm::dbgs() << " unConflictingWrite = operand "
|
|
<< uConflictingWrite->getOperandNumber() << " of "
|
|
<< *uConflictingWrite->getOwner() << "\n");
|
|
|
|
// Check if op dominance can be used to rule out read-after-write
|
|
// conflicts.
|
|
bool useDominance =
|
|
canUseOpDominance(uRead, uConflictingWrite, definitions, state);
|
|
LLVM_DEBUG(llvm::dbgs() << "\n- useDominance = " << useDominance << "\n");
|
|
|
|
// Throughout this loop, check for multiple requirements that have to be
|
|
// met for uConflictingWrite to be an actual conflict.
|
|
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
|
|
|
|
// Inside of repetitive regions, ops may be executed multiple times and op
|
|
// dominance cannot be used to rule out conflicts.
|
|
if (useDominance) {
|
|
// No conflict if the readingOp dominates conflictingWritingOp, i.e.,
|
|
// the write is not visible when reading.
|
|
//
|
|
// Note: If ops are executed multiple times (e.g., because they are
|
|
// inside a loop), there may be no meaningful `happensBefore`
|
|
// relationship.
|
|
if (happensBefore(readingOp, conflictingWritingOp, domInfo)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " no conflict: read happens before write\n");
|
|
continue;
|
|
}
|
|
|
|
// No conflict if the reading use equals the use of the conflicting
|
|
// write. A use cannot conflict with itself.
|
|
//
|
|
// Note: Just being the same op is not enough. It has to be the same
|
|
// use.
|
|
// Note: If the op is executed multiple times (e.g., because it is
|
|
// inside a loop), it may be conflicting with itself.
|
|
if (uConflictingWrite == uRead) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " no conflict: read and write are same use\n");
|
|
continue;
|
|
}
|
|
|
|
// Ops are not conflicting if they are in mutually exclusive regions.
|
|
//
|
|
// Note: If ops are executed multiple times (e.g., because they are
|
|
// inside a loop), mutually exclusive regions may be executed
|
|
// multiple times.
|
|
if (insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " no conflict: read and write are in "
|
|
"mutually exclusive regions\n");
|
|
continue;
|
|
}
|
|
|
|
// Two equivalent operands of the same op are not conflicting if the op
|
|
// bufferizes to element-wise access. I.e., all loads at a position
|
|
// happen before all stores to the same position.
|
|
if (conflictingWritingOp == readingOp) {
|
|
if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) {
|
|
if (bufferizableOp.bufferizesToElementwiseAccess(
|
|
state, {uRead, uConflictingWrite})) {
|
|
if (hasEquivalentValueInReverseUseDefChain(
|
|
state, uRead->get(), uConflictingWrite->get()) ||
|
|
hasEquivalentValueInReverseUseDefChain(
|
|
state, uConflictingWrite->get(), uRead->get())) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< " no conflict: op bufferizes to element-wise access\n");
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// No conflict if the operands are non-conflicting subsets.
|
|
if (areNonConflictingSubsets(uRead, uConflictingWrite, state)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " no conflict: non-conflicting subsets\n");
|
|
continue;
|
|
}
|
|
|
|
// No conflict if the op interface says so.
|
|
if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) {
|
|
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " no conflict: op interace of reading op says 'no'\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (conflictingWritingOp != readingOp) {
|
|
if (auto bufferizableOp =
|
|
options.dynCastBufferizableOp(conflictingWritingOp)) {
|
|
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite,
|
|
state)) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< " no conflict: op interace of writing op says 'no'\n");
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check all possible definitions.
|
|
for (Value definition : definitions) {
|
|
LLVM_DEBUG(llvm::dbgs() << " * definition = " << definition << "\n");
|
|
|
|
// No conflict if the conflicting write happens before the definition.
|
|
if (Operation *defOp = definition.getDefiningOp()) {
|
|
if (happensBefore(conflictingWritingOp, defOp, domInfo)) {
|
|
// conflictingWritingOp happens before defOp. No conflict.
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " no conflict: write happens before definition\n");
|
|
continue;
|
|
}
|
|
// No conflict if conflictingWritingOp is contained in defOp.
|
|
if (defOp->isProperAncestor(conflictingWritingOp)) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< " no conflict: write is contained in definition\n");
|
|
continue;
|
|
}
|
|
} else {
|
|
auto bbArg = cast<BlockArgument>(definition);
|
|
Block *block = bbArg.getOwner();
|
|
if (!block->findAncestorOpInBlock(*conflictingWritingOp)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " no conflict: definition is bbArg "
|
|
"and write happens outside of block\n");
|
|
// conflictingWritingOp happens outside of the block. No
|
|
// conflict.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// No conflict if the conflicting write and the definition are the same
|
|
// use.
|
|
AliasingValueList aliases = state.getAliasingValues(*uConflictingWrite);
|
|
if (aliases.getNumAliases() == 1 &&
|
|
aliases.getAliases()[0].value == definition) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " no conflict: definition and write are same\n");
|
|
continue;
|
|
}
|
|
|
|
// All requirements are met. Conflict found!
|
|
|
|
if (options.printConflicts)
|
|
annotateConflict(uRead, uConflictingWrite, definition);
|
|
LLVM_DEBUG(llvm::dbgs() << " => RaW CONFLICT FOUND\n");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Helper function to iterate on aliases of `root` and capture the writes.
|
|
static void getAliasingInplaceWrites(DenseSet<OpOperand *> &res, Value root,
|
|
const OneShotAnalysisState &state) {
|
|
state.applyOnAliases(root, [&](Value alias) {
|
|
for (auto &use : alias.getUses())
|
|
// Inplace write to a value that aliases root.
|
|
if (isInplaceMemoryWrite(use, state))
|
|
res.insert(&use);
|
|
});
|
|
}
|
|
|
|
// Helper function to iterate on aliases of `root` and capture the reads.
|
|
static void getAliasingReads(DenseSet<OpOperand *> &res, Value root,
|
|
const OneShotAnalysisState &state) {
|
|
state.applyOnAliases(root, [&](Value alias) {
|
|
for (auto &use : alias.getUses()) {
|
|
// Read of a value that aliases root.
|
|
if (state.bufferizesToMemoryRead(use)) {
|
|
res.insert(&use);
|
|
continue;
|
|
}
|
|
|
|
// Read of a dependent value in the SSA use-def chain. E.g.:
|
|
//
|
|
// %0 = ...
|
|
// %1 = tensor.extract_slice %0 {not_analyzed_yet}
|
|
// "read"(%1)
|
|
//
|
|
// In the above example, getAliasingReads(%0) includes the first OpOperand
|
|
// of the tensor.extract_slice op. The extract_slice itself does not read
|
|
// but its aliasing result is eventually fed into an op that does.
|
|
//
|
|
// Note: This is considered a "read" only if the use does not bufferize to
|
|
// a memory write. (We already ruled out memory reads. In case of a memory
|
|
// write, the buffer would be entirely overwritten; in the above example
|
|
// there would then be no flow of data from the extract_slice operand to
|
|
// its result's uses.)
|
|
if (!state.bufferizesToMemoryWrite(use)) {
|
|
AliasingValueList aliases = state.getAliasingValues(use);
|
|
if (llvm::any_of(aliases, [&](AliasingValue a) {
|
|
return state.isValueRead(a.value);
|
|
}))
|
|
res.insert(&use);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Return true if bufferizing `operand` inplace would create a conflict. A read
|
|
/// R and a write W of the same alias set is a conflict if inplace bufferization
|
|
/// of W changes the value read by R to a value different from the one that
|
|
/// would be expected by tracing back R's origin through SSA use-def chains.
|
|
/// A conflict can only be introduced by a new alias and/or an inplace
|
|
/// bufferization decision.
|
|
///
|
|
/// Example:
|
|
/// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?}
|
|
/// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32>
|
|
/// %e = tensor.extract_slice %1
|
|
/// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32>
|
|
/// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32>
|
|
///
|
|
/// In the above example, the two TransferWriteOps have already been decided to
|
|
/// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a
|
|
/// conflict because:
|
|
/// * According to SSA use-def chains, we expect to read the result of %1.
|
|
/// * However, adding an alias {%0, %t} would mean that the second
|
|
/// TransferWriteOp overwrites the result of the first one. Therefore, the
|
|
/// TransferReadOp would no longer be reading the result of %1.
|
|
///
|
|
/// If `checkConsistencyOnly` is true, this function checks if there is a
|
|
/// read-after-write conflict without bufferizing `operand` inplace. This would
|
|
/// indicate a problem with the current inplace bufferization decisions.
|
|
///
|
|
/// Note: If `checkConsistencyOnly`, this function may be called with a null
|
|
/// OpResult. In that case, only the consistency of bufferization decisions
|
|
/// involving aliases of the given OpOperand are checked.
|
|
static bool wouldCreateReadAfterWriteInterference(
|
|
OpOperand &operand, const DominanceInfo &domInfo,
|
|
OneShotAnalysisState &state, bool checkConsistencyOnly = false) {
|
|
// Collect reads and writes of all aliases of OpOperand and OpResult.
|
|
DenseSet<OpOperand *> usesRead, usesWrite;
|
|
getAliasingReads(usesRead, operand.get(), state);
|
|
getAliasingInplaceWrites(usesWrite, operand.get(), state);
|
|
for (AliasingValue alias : state.getAliasingValues(operand)) {
|
|
getAliasingReads(usesRead, alias.value, state);
|
|
getAliasingInplaceWrites(usesWrite, alias.value, state);
|
|
}
|
|
if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand))
|
|
usesWrite.insert(&operand);
|
|
|
|
return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state);
|
|
}
|
|
|
|
/// Annotate IR with details about the detected non-writability conflict.
|
|
static void annotateNonWritableTensor(Value value) {
|
|
static int64_t counter = 0;
|
|
OpBuilder b(value.getContext());
|
|
std::string id = "W_" + std::to_string(counter++);
|
|
if (auto opResult = dyn_cast<OpResult>(value)) {
|
|
std::string attr = id + "[NOT-WRITABLE: result " +
|
|
std::to_string(opResult.getResultNumber()) + "]";
|
|
opResult.getDefiningOp()->setAttr(attr, b.getUnitAttr());
|
|
} else {
|
|
auto bbArg = cast<BlockArgument>(value);
|
|
std::string attr = id + "[NOT-WRITABLE: bbArg " +
|
|
std::to_string(bbArg.getArgNumber()) + "]";
|
|
bbArg.getOwner()->getParentOp()->setAttr(attr, b.getUnitAttr());
|
|
}
|
|
}
|
|
|
|
/// Return true if bufferizing `operand` inplace would create a write to a
|
|
/// non-writable buffer.
|
|
static bool
|
|
wouldCreateWriteToNonWritableBuffer(OpOperand &operand,
|
|
OneShotAnalysisState &state,
|
|
bool checkConsistencyOnly = false) {
|
|
bool foundWrite =
|
|
!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand);
|
|
|
|
if (!foundWrite) {
|
|
// Collect writes of all aliases of OpOperand and OpResult.
|
|
DenseSet<OpOperand *> usesWrite;
|
|
getAliasingInplaceWrites(usesWrite, operand.get(), state);
|
|
for (AliasingValue alias : state.getAliasingValues(operand))
|
|
getAliasingInplaceWrites(usesWrite, alias.value, state);
|
|
foundWrite = !usesWrite.empty();
|
|
}
|
|
|
|
if (!foundWrite)
|
|
return false;
|
|
|
|
// Look for a read-only tensor among all aliases.
|
|
bool foundReadOnly = false;
|
|
auto checkReadOnly = [&](Value v) {
|
|
if (!state.isWritable(v)) {
|
|
foundReadOnly = true;
|
|
if (state.getOptions().printConflicts)
|
|
annotateNonWritableTensor(v);
|
|
}
|
|
};
|
|
state.applyOnAliases(operand.get(), checkReadOnly);
|
|
for (AliasingValue alias : state.getAliasingValues(operand))
|
|
state.applyOnAliases(alias.value, checkReadOnly);
|
|
if (foundReadOnly) {
|
|
LLVM_DEBUG(llvm::dbgs() << "=> NOT WRITABLE\n");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bufferization analyses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Find the values that define the contents of the given value.
|
|
const llvm::SetVector<Value> &
|
|
OneShotAnalysisState::findDefinitionsCached(Value value) {
|
|
if (!cachedDefinitions.count(value))
|
|
cachedDefinitions[value] = findDefinitions(value);
|
|
return cachedDefinitions[value];
|
|
}
|
|
|
|
void OneShotAnalysisState::resetCache() {
|
|
AnalysisState::resetCache();
|
|
cachedDefinitions.clear();
|
|
}
|
|
|
|
/// Determine if `operand` can be bufferized in-place.
|
|
static LogicalResult
|
|
bufferizableInPlaceAnalysisImpl(OpOperand &operand, OneShotAnalysisState &state,
|
|
const DominanceInfo &domInfo) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs() << "//===-------------------------------------------===//\n"
|
|
<< "Analyzing operand #" << operand.getOperandNumber()
|
|
<< " of " << *operand.getOwner() << "\n");
|
|
|
|
bool foundInterference =
|
|
wouldCreateWriteToNonWritableBuffer(operand, state) ||
|
|
wouldCreateReadAfterWriteInterference(operand, domInfo, state);
|
|
|
|
if (foundInterference)
|
|
state.bufferizeOutOfPlace(operand);
|
|
else
|
|
state.bufferizeInPlace(operand);
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "//===-------------------------------------------===//\n");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OneShotAnalysisState::analyzeSingleOp(Operation *op,
|
|
const DominanceInfo &domInfo) {
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (isa<TensorType>(opOperand.get().getType()))
|
|
if (failed(bufferizableInPlaceAnalysisImpl(opOperand, *this, domInfo)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
/// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops.
|
|
static void equivalenceAnalysis(SmallVector<Operation *> &ops,
|
|
OneShotAnalysisState &state) {
|
|
for (Operation *op : ops) {
|
|
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) {
|
|
for (OpResult opResult : op->getOpResults()) {
|
|
if (!isa<TensorType>(opResult.getType()))
|
|
continue;
|
|
AliasingOpOperandList aliases = state.getAliasingOpOperands(opResult);
|
|
if (aliases.getNumAliases() == 0)
|
|
// Nothing to do if there are no aliasing OpOperands.
|
|
continue;
|
|
|
|
Value firstOperand = aliases.begin()->opOperand->get();
|
|
bool allEquivalent = true;
|
|
for (AliasingOpOperand alias : aliases) {
|
|
bool isEquiv = alias.relation == BufferRelation::Equivalent;
|
|
bool isInPlace = state.isInPlace(*alias.opOperand);
|
|
Value operand = alias.opOperand->get();
|
|
if (isEquiv && isInPlace && alias.isDefinite) {
|
|
// Found a definite, equivalent alias. Merge equivalence sets.
|
|
// There can only be one definite alias, so we can stop here.
|
|
state.unionEquivalenceClasses(opResult, operand);
|
|
allEquivalent = false;
|
|
break;
|
|
}
|
|
if (!isEquiv || !isInPlace)
|
|
allEquivalent = false;
|
|
if (!state.areEquivalentBufferizedValues(operand, firstOperand))
|
|
allEquivalent = false;
|
|
}
|
|
|
|
// If all "maybe" aliases are equivalent and the OpResult is not a new
|
|
// allocation, it is a definite, equivalent alias. E.g.:
|
|
//
|
|
// aliasingOpOperands(%r) = {(%t0, EQUIV, MAYBE), (%t1, EQUIV, MAYBE)}
|
|
// aliasingValues(%t0) = {(%r, EQUIV, MAYBE)}
|
|
// aliasingValues(%t1) = {(%r, EQUIV, MAYBE)}
|
|
// %r = arith.select %c, %t0, %t1 : tensor<?xf32>
|
|
//
|
|
// If %t0 and %t1 are equivalent, it is safe to union the equivalence
|
|
// classes of %r, %t0 and %t1.
|
|
if (allEquivalent && !bufferizableOp.bufferizesToAllocation(opResult))
|
|
state.unionEquivalenceClasses(opResult, firstOperand);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained
|
|
/// in `op`.
|
|
static void equivalenceAnalysis(Operation *op, OneShotAnalysisState &state) {
|
|
// Traverse ops in PostOrder: Nested ops first, then enclosing ops.
|
|
SmallVector<Operation *> ops;
|
|
op->walk<WalkOrder::PostOrder>([&](Operation *op) {
|
|
// No tensors => no buffers.
|
|
if (none_of(op->getResultTypes(), isaTensor))
|
|
return;
|
|
ops.push_back(op);
|
|
});
|
|
|
|
equivalenceAnalysis(ops, state);
|
|
}
|
|
|
|
/// "Bottom-up from terminators" heuristic.
|
|
static SmallVector<Operation *>
|
|
bottomUpFromTerminatorsHeuristic(Operation *op,
|
|
const OneShotAnalysisState &state) {
|
|
SetVector<Operation *> traversedOps;
|
|
|
|
// Find region terminators.
|
|
op->walk<WalkOrder::PostOrder>([&](RegionBranchTerminatorOpInterface term) {
|
|
if (!traversedOps.insert(term))
|
|
return;
|
|
// Follow the reverse SSA use-def chain from each yielded value as long as
|
|
// we stay within the same region.
|
|
SmallVector<OpResult> worklist;
|
|
for (Value v : term->getOperands()) {
|
|
if (!isa<TensorType>(v.getType()))
|
|
continue;
|
|
auto opResult = dyn_cast<OpResult>(v);
|
|
if (!opResult)
|
|
continue;
|
|
worklist.push_back(opResult);
|
|
}
|
|
while (!worklist.empty()) {
|
|
OpResult opResult = worklist.pop_back_val();
|
|
Operation *defOp = opResult.getDefiningOp();
|
|
if (!traversedOps.insert(defOp))
|
|
continue;
|
|
if (!term->getParentRegion()->findAncestorOpInRegion(*defOp))
|
|
continue;
|
|
AliasingOpOperandList aliases = state.getAliasingOpOperands(opResult);
|
|
for (auto alias : aliases) {
|
|
Value v = alias.opOperand->get();
|
|
if (!isa<TensorType>(v.getType()))
|
|
continue;
|
|
auto opResult = dyn_cast<OpResult>(v);
|
|
if (!opResult)
|
|
continue;
|
|
worklist.push_back(opResult);
|
|
}
|
|
}
|
|
});
|
|
|
|
// Analyze traversed ops, then all remaining ops.
|
|
SmallVector<Operation *> result(traversedOps.begin(), traversedOps.end());
|
|
op->walk<WalkOrder::PostOrder, ReverseIterator>([&](Operation *op) {
|
|
if (!traversedOps.contains(op) && hasTensorSemantics(op))
|
|
result.push_back(op);
|
|
});
|
|
return result;
|
|
}
|
|
|
|
LogicalResult OneShotAnalysisState::analyzeOp(Operation *op,
|
|
const DominanceInfo &domInfo) {
|
|
OneShotBufferizationOptions::AnalysisHeuristic heuristic =
|
|
getOptions().analysisHeuristic;
|
|
|
|
SmallVector<Operation *> orderedOps;
|
|
if (heuristic ==
|
|
OneShotBufferizationOptions::AnalysisHeuristic::BottomUpFromTerminators) {
|
|
orderedOps = bottomUpFromTerminatorsHeuristic(op, *this);
|
|
} else {
|
|
op->walk([&](Operation *op) {
|
|
// No tensors => no buffers.
|
|
if (!hasTensorSemantics(op))
|
|
return;
|
|
orderedOps.push_back(op);
|
|
});
|
|
switch (heuristic) {
|
|
case OneShotBufferizationOptions::AnalysisHeuristic::BottomUp: {
|
|
// Default: Walk ops in reverse for better interference analysis.
|
|
std::reverse(orderedOps.begin(), orderedOps.end());
|
|
break;
|
|
}
|
|
case OneShotBufferizationOptions::AnalysisHeuristic::TopDown: {
|
|
// Ops are already sorted top-down in `orderedOps`.
|
|
break;
|
|
}
|
|
case OneShotBufferizationOptions::AnalysisHeuristic::Fuzzer: {
|
|
assert(getOptions().analysisFuzzerSeed &&
|
|
"expected that fuzzer seed it set");
|
|
// This is a fuzzer. For testing purposes only. Randomize the order in
|
|
// which operations are analyzed. The bufferization quality is likely
|
|
// worse, but we want to make sure that no assertions are triggered
|
|
// anywhere.
|
|
std::mt19937 g(getOptions().analysisFuzzerSeed);
|
|
llvm::shuffle(orderedOps.begin(), orderedOps.end(), g);
|
|
break;
|
|
}
|
|
default: {
|
|
llvm_unreachable("unsupported heuristic");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Analyze ops in the computed order.
|
|
for (Operation *op : orderedOps)
|
|
if (failed(analyzeSingleOp(op, domInfo)))
|
|
return failure();
|
|
|
|
equivalenceAnalysis(op, *this);
|
|
return success();
|
|
}
|
|
|
|
/// Perform various checks on the input IR to see if it contains IR constructs
|
|
/// that are unsupported by One-Shot Bufferize.
|
|
static LogicalResult
|
|
checkPreBufferizationAssumptions(Operation *op, const DominanceInfo &domInfo,
|
|
OneShotAnalysisState &state) {
|
|
const BufferizationOptions &options = state.getOptions();
|
|
|
|
// Note: This walk cannot be combined with the one below because interface
|
|
// methods of invalid/unsupported ops may be called during the second walk.
|
|
// (On ops different from `op`.)
|
|
WalkResult walkResult = op->walk([&](BufferizableOpInterface op) {
|
|
// Skip ops that are not in the filter.
|
|
if (!options.isOpAllowed(op.getOperation()))
|
|
return WalkResult::advance();
|
|
|
|
// Check for unsupported unstructured control flow.
|
|
if (!op.supportsUnstructuredControlFlow()) {
|
|
for (Region &r : op->getRegions()) {
|
|
if (r.getBlocks().size() > 1) {
|
|
op->emitOpError("op or BufferizableOpInterface implementation does "
|
|
"not support unstructured control flow, but at least "
|
|
"one region has multiple blocks");
|
|
return WalkResult::interrupt();
|
|
}
|
|
}
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
if (walkResult.wasInterrupted())
|
|
return failure();
|
|
|
|
walkResult = op->walk([&](BufferizableOpInterface op) {
|
|
// Skip ops that are not in the filter.
|
|
if (!options.isOpAllowed(op.getOperation()))
|
|
return WalkResult::advance();
|
|
|
|
// Input IR may not contain any ToTensorOps without the "restrict"
|
|
// attribute. Such tensors may alias any other tensor, which is currently
|
|
// not handled in the analysis.
|
|
if (auto toTensorOp = dyn_cast<ToTensorOp>(op.getOperation())) {
|
|
if (!toTensorOp.getRestrict() && !toTensorOp->getUses().empty()) {
|
|
op->emitOpError("to_tensor ops without `restrict` are not supported by "
|
|
"One-Shot Analysis");
|
|
return WalkResult::interrupt();
|
|
}
|
|
}
|
|
|
|
for (OpOperand &opOperand : op->getOpOperands()) {
|
|
if (isa<TensorType>(opOperand.get().getType())) {
|
|
if (wouldCreateReadAfterWriteInterference(
|
|
opOperand, domInfo, state,
|
|
/*checkConsistencyOnly=*/true)) {
|
|
// This error can happen if certain "mustBufferizeInPlace" interface
|
|
// methods are implemented incorrectly, such that the IR already has
|
|
// a RaW conflict before making any bufferization decisions. It can
|
|
// also happen if the bufferization.materialize_in_destination is used
|
|
// in such a way that a RaW conflict is not avoidable.
|
|
op->emitOpError("not bufferizable under the given constraints: "
|
|
"cannot avoid RaW conflict");
|
|
return WalkResult::interrupt();
|
|
}
|
|
|
|
if (state.isInPlace(opOperand) &&
|
|
wouldCreateWriteToNonWritableBuffer(
|
|
opOperand, state, /*checkConsistencyOnly=*/true)) {
|
|
op->emitOpError("not bufferizable under the given constraints: would "
|
|
"write to read-only buffer");
|
|
return WalkResult::interrupt();
|
|
}
|
|
}
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
|
|
return success(!walkResult.wasInterrupted());
|
|
}
|
|
|
|
/// Annotate the IR with the result of the analysis. For testing/debugging only.
|
|
static void
|
|
annotateOpsWithBufferizationMarkers(Operation *op,
|
|
const OneShotAnalysisState &state) {
|
|
// Add __inplace_operands_attr__.
|
|
op->walk([&](Operation *op) {
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (isa<TensorType>(opOperand.get().getType()))
|
|
setInPlaceOpOperand(opOperand, state.isInPlace(opOperand));
|
|
});
|
|
}
|
|
|
|
static void annotateOpsWithAliasSets(Operation *op,
|
|
const OneShotAnalysisState &state) {
|
|
AsmState asmState(op);
|
|
Builder b(op->getContext());
|
|
// Helper function to build an array attribute of aliasing SSA value strings.
|
|
auto buildAliasesArray = [&](Value v) {
|
|
SmallVector<Attribute> aliases;
|
|
state.applyOnAliases(v, [&](Value alias) {
|
|
std::string buffer;
|
|
llvm::raw_string_ostream stream(buffer);
|
|
alias.printAsOperand(stream, asmState);
|
|
aliases.push_back(b.getStringAttr(buffer));
|
|
});
|
|
return b.getArrayAttr(aliases);
|
|
};
|
|
|
|
op->walk([&](Operation *op) {
|
|
// Build alias set array for every OpResult.
|
|
SmallVector<Attribute> opResultAliasSets;
|
|
for (OpResult opResult : op->getOpResults()) {
|
|
if (llvm::isa<TensorType>(opResult.getType())) {
|
|
opResultAliasSets.push_back(buildAliasesArray(opResult));
|
|
}
|
|
}
|
|
if (!opResultAliasSets.empty())
|
|
op->setAttr(kOpResultAliasSetAttrName, b.getArrayAttr(opResultAliasSets));
|
|
|
|
// Build alias set array for every BlockArgument.
|
|
SmallVector<Attribute> regionAliasSets;
|
|
bool hasTensorBbArg = false;
|
|
for (Region &r : op->getRegions()) {
|
|
SmallVector<Attribute> blockAliasSets;
|
|
for (Block &block : r.getBlocks()) {
|
|
SmallVector<Attribute> bbArgAliasSets;
|
|
for (BlockArgument bbArg : block.getArguments()) {
|
|
if (llvm::isa<TensorType>(bbArg.getType())) {
|
|
bbArgAliasSets.push_back(buildAliasesArray(bbArg));
|
|
hasTensorBbArg = true;
|
|
}
|
|
}
|
|
blockAliasSets.push_back(b.getArrayAttr(bbArgAliasSets));
|
|
}
|
|
regionAliasSets.push_back(b.getArrayAttr(blockAliasSets));
|
|
}
|
|
if (hasTensorBbArg)
|
|
op->setAttr(kBbArgAliasSetAttrName, b.getArrayAttr(regionAliasSets));
|
|
});
|
|
}
|
|
|
|
LogicalResult bufferization::analyzeOp(Operation *op,
|
|
OneShotAnalysisState &state,
|
|
BufferizationStatistics *statistics) {
|
|
DominanceInfo domInfo(op);
|
|
const OneShotBufferizationOptions &options = state.getOptions();
|
|
|
|
if (failed(checkPreBufferizationAssumptions(op, domInfo, state)))
|
|
return failure();
|
|
|
|
// If the analysis fails, just return.
|
|
if (failed(state.analyzeOp(op, domInfo)))
|
|
return failure();
|
|
|
|
if (statistics) {
|
|
statistics->numTensorInPlace = state.getStatNumTensorInPlace();
|
|
statistics->numTensorOutOfPlace = state.getStatNumTensorOutOfPlace();
|
|
}
|
|
|
|
bool failedAnalysis = false;
|
|
|
|
// Gather some extra analysis data.
|
|
state.gatherUndefinedTensorUses(op);
|
|
|
|
// Analysis verification: After setting up alias/equivalence sets, each op
|
|
// can check for expected invariants/limitations and fail the analysis if
|
|
// necessary.
|
|
op->walk([&](Operation *op) {
|
|
if (BufferizableOpInterface bufferizableOp =
|
|
options.dynCastBufferizableOp(op))
|
|
failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state));
|
|
});
|
|
|
|
// Annotate operations if we only want to report the analysis.
|
|
if (options.testAnalysisOnly)
|
|
annotateOpsWithBufferizationMarkers(op, state);
|
|
if (options.dumpAliasSets)
|
|
annotateOpsWithAliasSets(op, state);
|
|
|
|
return success(!failedAnalysis);
|
|
}
|
|
|
|
LogicalResult
|
|
bufferization::runOneShotBufferize(Operation *op,
|
|
const OneShotBufferizationOptions &options,
|
|
BufferizationStatistics *statistics) {
|
|
// copy-before-write deactivates the analysis. It cannot be used together with
|
|
// test-analysis-only.
|
|
assert(!(options.copyBeforeWrite && options.testAnalysisOnly) &&
|
|
"invalid combination of bufferization flags");
|
|
|
|
if (options.copyBeforeWrite) {
|
|
// Copy buffer before each write. No analysis is needed.
|
|
} else {
|
|
// Run One-Shot Analysis and insert buffer copies (on the tensor level)
|
|
// only where needed. This is the default and much more efficient than
|
|
// copy-before-write.
|
|
if (failed(insertTensorCopies(op, options, statistics)))
|
|
return failure();
|
|
|
|
// If test-analysis-only is set, the IR was annotated with RaW conflict
|
|
// markers (attributes) during One-Shot Analysis.
|
|
if (options.testAnalysisOnly)
|
|
return success();
|
|
}
|
|
|
|
// Bufferize the op and its nested ops. If options.copyBeforeWrite is set,
|
|
// a new buffer copy is allocated every time a buffer is written to.
|
|
return bufferizeOp(op, options, statistics);
|
|
}
|