This is the first commit in a series with the goal to rework the
BufferDeallocation pass. Currently, this pass heavily relies on copies
to perform correct deallocations, which leads to very slow code and
potentially high memory usage. Additionally, there are unsupported cases
such as returning memrefs which this series of commits aims to add
support for as well.
This first commit removes the deallocation capabilities of
one-shot-bufferization.One-shot-bufferization should never deallocate any
memrefs as this should be entirely handled by the buffer-deallocation pass
going forward. This means the allow-return-allocs pass option will
default to true now, create-deallocs defaults to false and they, as well
as the escape attribute indicating whether a memref escapes the current region,
will be removed.
The documentation should w.r.t. these pass option changes should also be
updated in this commit.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D156662
This is a major step along the way towards the new STEA design. While a great deal of this patch is simple renaming, there are several significant changes as well. I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping. Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D151505
This commit is part of the migration of towards the new STEA syntax/design. In particular, this commit includes the following changes:
* Renaming compiler-internal functions/methods:
* `SparseTensorEncodingAttr::{getDimLevelType => getLvlTypes}`
* `Merger::{getDimLevelType => getLvlType}` (for consistency)
* `sparse_tensor::{getDimLevelType => buildLevelType}` (to help reduce confusion vs actual getter methods)
* Renaming external facets to match:
* the STEA parser and printer
* the C and Python bindings
* PyTACO
However, the actual renaming of the `DimLevelType` itself (along with all the "dlt" names) will be handled in a separate commit.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D150330
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
These functions don't need a`PatternRewriter`, they only need an `OpBuilder`. And, the builder should be the first argument, before the `Location`, to match the style used everywhere else in MLIR.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D148059
The old "pointer/index" names often cause confusion since these names clash with names of unrelated things in MLIR; so this change rectifies this by changing everything to use "position/coordinate" terminology instead.
In addition to the basic terminology, there have also been various conventions for making certain distinctions like: (1) the overall storage for coordinates in the sparse-tensor, vs the particular collection of coordinates of a given element; and (2) particular coordinates given as a `Value` or `TypedValue<MemRefType>`, vs particular coordinates given as `ValueRange` or similar. I have striven to maintain these distinctions
as follows:
* "p/c" are used for individual position/coordinate values, when there is no risk of confusion. (Just like we use "d/l" to abbreviate "dim/lvl".)
* "pos/crd" are used for individual position/coordinate values, when a longer name is helpful to avoid ambiguity or to form compound names (e.g., "parentPos"). (Just like we use "dim/lvl" when we need a longer form of "d/l".)
I have also used these forms for a handful of compound names where the old name had been using a three-letter form previously, even though a longer form would be more appropriate. I've avoided renaming these to use a longer form purely for expediency sake, since changing them would require a cascade of other renamings. They should be updated to follow the new naming scheme, but that can be done in future patches.
* "coords" is used for the complete collection of crd values associated with a single element. In the runtime library this includes both `std::vector` and raw pointer representations. In the compiler, this is used specifically for buffer variables with C++ type `Value`, `TypedValue<MemRefType>`, etc.
The bare form "coords" is discouraged, since it fails to make the dim/lvl distinction; so the compound names "dimCoords/lvlCoords" should be used instead. (Though there may exist a rare few cases where is is appropriate to be intentionally ambiguous about what coordinate-space the coords live in; in which case the bare "coords" is appropriate.)
There is seldom the need for the pos variant of this notion. In most circumstances we use the term "cursor", since the same buffer is reused for a 'moving' pos-collection.
* "dcvs/lcvs" is used in the compiler as the `ValueRange` analogue of "dimCoords/lvlCoords". (The "vs" stands for "`Value`s".) I haven't found the need for it, but "pvs" would be the obvious name for a pos-`ValueRange`.
The old "ind"-vs-"ivs" naming scheme does not seem to have been sustained in more recent code, which instead prefers other mnemonics (e.g., adding "Buf" to the end of the names for `TypeValue<MemRefType>`). I have cleaned up a lot of these to follow the "coords"-vs-"cvs" naming scheme, though haven't done an exhaustive cleanup.
* "positions/coordinates" are used for larger collections of pos/crd values; in particular, these are used when referring to the complete sparse-tensor storage components.
I also prefer to use these unabbreviated names in the documentation, unless there is some specific reason why using the abbreviated forms helps resolve ambiguity.
In addition to making this terminology change, this change also does some cleanup along the way:
* correcting the dim/lvl terminology in certain places.
* adding `const` when it requires no other code changes.
* miscellaneous cleanup that was entailed in order to make the proper distinctions. Most of these are in CodegenUtils.{h,cpp}
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D144773
* Flattening/simplifying some nested conditionals
* const-ifying some local variables
Depends On D143800
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D143949
This change adds a new `SparseTensorType` class for making the "dim" vs "lvl" distinction more overt, and for abstracting over the differences between sparse-tensors and dense-tensors. In addition, this change also adds new type aliases `Dimension`, `Level`, and `FieldIndex` to make code more self-documenting.
Although the diff is very large, the majority of the changes are mechanical in nature (e.g., changing types to use the new aliases, updating variable names to match, etc). Along the way I also made many variables `const` when they could be; the majority of which required only adding the keyword. A few places had conditional definitions of these variables, requiring actual code changes; however, that was only done when the overall change was extremely local and easy to extract. All these changes are included in the current patch only because it would be too onerous to split them off into a separate patch.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D143800
The bulk of D142074 seems to have gotten overwritten due to some sort of merge conflict (afaict there's no record of it having been reverted intentionally). So this commit redoes those changes. In addition to the original changes, this commit also:
* moves the definition of `getRankedTensorType` (from `Transforms/CodegenUtils.h` to `IR/SparseTensor.h`), so that it can be used by `IR/SparseTensorDialect.cpp`.
* adds `getMemRefType` as another abbreviation.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D142503
Move the functionality to codegen utils for sharing with the codegen path.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D141514
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
When concat along dim 0, and all inputs/outputs are ordered with identity dimension ordering,
the concatenated coordinates will be yield in lexOrder, thus no need to sort.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D140228
This allows allocaBuffer to be used outside of SparseTensorConversion.cpp, which will be helpful for a some future commits.
Reviewed By: aartbik, Peiming
Differential Revision: https://reviews.llvm.org/D140047
Since STEA isa Attribute, and that's just (a wrapper around) a pointer, the extra `const` and `&` aren't necessary for function arguments.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D139886
This change cleans up the conversion pass re the "dim"-vs-"lvl" and "sizes"-vs-"shape" distinctions of the runtime. A quick synopsis includes:
* Adds new `SparseTensorStorageBase::getDimSize` method, with `sparseDimSize` wrapper in SparseTensorRuntime.h, and `genDimSizeCall` generator in SparseTensorConversion.cpp
* Changes `genLvlSizeCall` to perform no logic, just generate the function call.
* Adds `createOrFold{Dim,Lvl}Call` functions to handle the logic of replacing `gen{Dim,Lvl}SizeCall` with constants whenever possible. The `createOrFoldDimCall` function replaces the old `sizeFromPtrAtDim`.
* Adds `{get,fill}DimSizes` functions for iterating `createOrFoldDimCall` across the whole type. These functions replace the old `sizesFromPtr`.
* Adds `{get,fill}DimShape` functions for lowering a `ShapedType` into constants. These functions replace the old `sizesFromType`.
* Changes the `DimOp` rewrite to do the right thing.
* Changes the `ExpandOp` rewrite to compute the proper expansion size.
Depends On D138365
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D139165
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This commit updates how the `SparseTensorConversion` pass handles `NewOp`. It breaks up the underlying `openSparseTensor` function into two parts (`SparseTensorReader::create` and `SparseTensorReader::readSparseTensor`) so that the pass can inject code for constructing `lvlSizes` between those two parts. Migrating the construction of `lvlSizes` out of the runtime and into the pass is a necessary first step toward fully supporting non-permutations. (The alternative would be for the pass to generate a `FuncOp` for performing the construction and then passing that to the runtime; which doesn't seem to have any benefits over the design of this commit.) And since the pass now generates the code to call these two functions, this change also removes the `Action::kFromFile` value from the enum used by `_mlir_ciface_newSparseTensor`.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D138363
Modify the integration test to check number_of_entries and use it to limit for
outputing sparse tensor values.
Reviewed By: aartbik, Peiming
Differential Revision: https://reviews.llvm.org/D138046
Systematically updates the SparseTensorRuntime to properly distinguish tensor-dimensions from storage-levels (and their associated ranks, shapes, sizes, indices, etc). With a few exceptions which are noted in the code, this ensures the runtime has all the **semantic** changes necessary to support non-permutations.
(Whereas **operationally**, since we're still using `std::vector<uing64_t>` to represent the mappings, there's no way to pass in any interesting non-permutations. Changing the representation to `std::function` will be done in a separate differential.)
Depends On D137680
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D137681
(1) also fixes memory leak in sparse2dense rewriting
(2) still needs fix in dense2sparse by skipping zeros
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D137736
The new class helps encapsulate the arguments to `_mlir_ciface_newSparseTensor` so that client code doesn't depend on the details of the API. (This makes way for the next differential which significantly alters the API.)
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D137680
The alloc->insert/compress->load chain needs to be
properly represented with an SSA chain now in loops
and if statements to properly reflect the modifying
behavior (runtime support lib is forgiving on breaking
this, but the new codegen is not).
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D136966
Outline the code that generates the loop structure to iterate over a dense
tensor or a sparse constant to genDenseTensorOrSparseConstantIterLoop.
Move a few routines to CodegenUtils for sharing.
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D136210
Move the SparseTensorEnums library out of the ExecutionEngine directory and into Dialect/SparseTensor/IR.
Depends On D136002
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D136005
This differential replaces all uses of SparseTensorEncodingAttr::DimLevelType with DimLevelType. The next differential will break out a separate library for the DimLevelType enum, so that the Dialect code doesn't need to depend on the rest of the runtime
Depends On D135995
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D135996
This is a proof of concept insertion implementation that sets up
the basic framework and implements it with push backs for just
sparse vectors. It adds insertion/compression through SSA values,
so that we properly update the memref after after pushback operation.
Note that properly using SSA values in sparsification is still TBD
but I will wait until Peiming's loop emitter is in to avoid conflicts.
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D136008
Move a few supporting routines for generating function calls to CodegenUtils so
that they can be used by the codegen path for sparse tensor file input and
output.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D135691
This differential comprises three related changes: (1) it gives SparseTensorCOO standard C++-style iterators; (2) it removes the old iterator stuff from SparseTensorCOO; and (3) it introduces SparseTensorIterator which behaves like the old SparseTensorCOO iterator stuff used to.
The SparseTensorIterator class is needed because the MLIR codegen cannot easily use the C++-style iterators (hence why SparseTensorCOO had the old iterator stuff). Distinguishing SparseTensorIterator from SparseTensorCOO also helps improve API hygiene since these two classes are used for distinct purposes. And having SparseTensorIterator as its own class enables changing the underlying implementation in the future, without needing to worry about updating all the codegen tests etc.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D135485
Handle more cases of singleton DLT including direct sparse2sparse conversion. (Followup to D134096)
Depends On D134926
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D134933
This extension to the sparse tensor type system in MLIR
opens up a whole new set of sparse storage schemes, such as
block sparse storage (e.g. BCSR) and ELL (aka jagged diagonals).
This revision merely introduces the type extension and
initial documentation. The actual interpretation of the type
(reading in tensors, lowering to code, etc.) will follow.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D135206
Move genReshapeDstShape to codegen utils to support the rewriting of the tensor
reshape operators for the codegen path.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D135074
TranslateIndicesArray take an array of SSA value and convert them into another array of SSA values based on reassociation. Which makes it easier to be reused by `foreach` operator (as the indices array are given as an array of SSA values).
Reviewed By: aartbik, bixia
Differential Revision: https://reviews.llvm.org/D134918
Previously, the SparseTensorUtils.cpp library contained a C++ core implementation, but hid it in an anonymous namespace and only exposed a C-API for accessing it. Now we are factoring out that C++ core into a standalone C++ library so that it can be used directly by downstream clients (per request of one such client). This refactoring has been decomposed into a stack of differentials in order to simplify the code review process, however the full stack of changes should be considered together.
* (this): Part 1: split one file into several
* D133830: Part 2: Reorder chunks within files
* D133831: Part 3: General code cleanup
* D133833: Part 4: Update documentation
This part aims to make no changes other than the 1:N file splitting, and things which are forced to accompany that change.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D133462
The indices for insert/compress were previously provided as
a memref<?xindex> with proper rank, since that matched the
argument for the runtime support libary better. However, with
proper codegen coming, providing the indices as SSA values
is much cleaner. This also brings the sparse_tensor.insert
closer to unification with tensor.insert, planned in the
longer run.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D134404
This change goes not impact any semantics yet, but it
is in preparation for implementing the unordered and not-unique
properties. Changing lex_insert to insert is a first step.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D133531
Access pattern expansion is always done along the innermost stored
dimension, but this was incorrectly reordered due to using a
general utility typically used by original dimensions only.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D133472