Even though this feature was deprecated in release 11.2,
any library before this version still supports the feature,
which is why we are making it available under a macro.
Reviewed By: K-Wu
Differential Revision: https://reviews.llvm.org/D152290
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This patch updates all remaining uses of the deprecated functionality in
mlir/. This was done with clang-tidy as described below and further
modifications to GPUBase.td and OpenMPOpsInterfaces.td.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D151542
This no longer assumes just F64 output.
Note, however, that it will be cleaner to carry the data type in the corresponding operation (rather than tracking operands). That will also allow for mixed type cases, where operands and result type are different
This will be done in a follow revision where the result type is carried by the SpMV/SpMM op itself (and friends).
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D151005
This revision extends the GPU dialect with ops that can be lowered to
host-oriented sparse matrix library calls (in this case cuSparse focused
although the ops could be generalized to support more GPUs in principle).
This will allow the "sparse compiler pipeline" to accelerate sparse operations
(see follow up revisions with examples of this).
For some background;
https://discourse.llvm.org/t/sparse-compiler-and-gpu-code-generation/69786/2
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D150152
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
Without explicitly unregistering you will get
```
'cuMemHostRegister(ptr, sizeBytes, 0)' failed with 'CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED'
```
in CUDA (for example) after repeated runs (e.g., during benchmarking the same kernel).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D147277
This has caused build failures when enabling opaque pointers for the GPU integration tests as could be seen here:
https://lab.llvm.org/buildbot/#/builders/220/builds/16946 and here https://lab.llvm.org/buildbot/#/builders/61/builds/40822
The gist of the issue was the use of a wrong pointer base type within a GEP. There sadly was no test coverage for either the generating of that GEP, nor is LLVM Dialects GEP verifier currently capable of catching such issues, so it went unnoticed until the integration tests actually attempted to convert it to LLVM IR.
Differential Revision: https://reviews.llvm.org/D145774
Part of https://discourse.llvm.org/t/rfc-switching-the-llvm-dialect-and-dialect-lowerings-to-opaque-pointers/68179
This patch adds the new pass option `use-opaque-pointers` to the GPU to LLVM lowerings (including ROCD and NVVM) and adapts the code to support using opaque pointers in addition to typed pointers.
The required changes mostly boil down to avoiding `getElementType` and specifying base types in GEP and Alloca.
In the future opaque pointers will be the only supported model, hence tests have been ported to using opaque pointers by default. Additional regression tests for typed-pointers have been added to avoid breaking existing clients.
Note: This does not yet port the `GpuToVulkan` passes.
Differential Revision: https://reviews.llvm.org/D144448
The runtime functions `memset` and `memcpy` are lowered are declared with pointers to the default address space (0) while their ops however are compatible with memrefs taking any address space.
Such cases do not cause any issues with MLIRs LLVM Dialect due to `bitcast`s verifier being too lenient at the moment, but actual LLVM IR does not allow casting between address spaces using `bitcast`: https://godbolt.org/z/3a1z97rc9
This patch fixes the issue by inserting an address space cast before the bitcast, to first cast the pointer into the correct address space before doing the bitcast.
Differential Revision: https://reviews.llvm.org/D143866
See https://github.com/llvm/llvm-project/issues/57475 for more context.
Using auto-generated constructors and options has significant advantages:
* It forces a uniform style and expectation for consuming a pass
* It allows to very easily add, remove or change options to a pass by simply making the changes in TableGen
* Its less code
This patch in particular ports all the conversion passes which lower to LLVM to use the auto generated constructors and options. For the most part, care was taken so that auto generated constructor functions have the same name as they previously did. Only following slight breaking changes (which I consider as worth the churn) have been made:
* `mlir::cf::createConvertControlFlowToLLVMPass` has been moved to the `mlir` namespace. This is consistent with basically all conversion passes
* `createGpuToLLVMConversionPass` now takes a proper options struct array for its pass options. The pass options are now also autogenerated.
* `LowerVectorToLLVMOptions` has been replaced by the autogenerated `ConvertVectorToLLVMPassOptions` which is automatically kept up to date by TableGen
* I had to move one function in the GPU to LLVM lowering as it is used as default value for an option.
* All passes that previously returned `unique_ptr<OperationPass<...>>` now simply return `unique_ptr<Pass>`
Differential Revision: https://reviews.llvm.org/D143773
Since the recent MemRef refactoring that centralizes the lowering of
complex MemRef operations outside of the conversion framework, the
MemRefToLLVM pass doesn't directly convert these complex operations.
Instead, to fully convert the whole MemRef dialect space, MemRefToLLVM
needs to run after `expand-strided-metadata`.
Make this more obvious by changing the name of the pass and the option
associated with it from `convert-memref-to-llvm` to
`finalize-memref-to-llvm`.
The word "finalize" conveys that this pass needs to run after something
else and that something else is documented in its tablegen description.
This is a follow-up patch related to the conversation at:
https://discourse.llvm.org/t/psa-you-need-to-run-expand-strided-metadata-before-memref-to-llvm-now/66956/14
Differential Revision: https://reviews.llvm.org/D142463
Motivation: we have lowering pipeline based on upstream gpu and spirv dialects and and we are using host shared gpu memory to transfer data between host and device.
Add `host_shared` flag to `gpu.alloc` to distinguish between shared and device-only gpu memory allocations.
Differential Revision: https://reviews.llvm.org/D133533
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
mlir::TypedValue is a wrapper class for mlir::Values with a known type
getType will return the known type and all assignements will be checked
Also the tablegen Operation generator was adapted to use mlir::TypedValue
when appropriate
In the ROCm runtime (and probably CUDA as well), all kernel arguments
are aligned. Therefore, enable using bare pointers for memref
arguments to kernels when these memrefs have static shape and a
trivial layout.
This is a substantial optimization to launching kernels that use
memrefs with known, static sizes, since it causes the kernel launch
packet to no longer include information already known to the kernel,
which can enable packing the kernel launch arguments into launch
packets instead of having to allocate an entire separate structure to
hold unneeded memref information.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D130716
This is the follow up on https://reviews.llvm.org/D130730 which goes through upstream code and removes creating constant values in favour of using the constant indices in GEP directly. This leads to less and more readable code and more compact IR as well.
Differential Revision: https://reviews.llvm.org/D130731
The current StandardToLLVM conversion patterns only really handle
the Func dialect. The pass itself adds patterns for Arithmetic/CFToLLVM, but
those should be/will be split out in a followup. This commit focuses solely
on being an NFC rename.
Aside from the directory change, the pattern and pass creation API have been renamed:
* populateStdToLLVMFuncOpConversionPattern -> populateFuncToLLVMFuncOpConversionPattern
* populateStdToLLVMConversionPatterns -> populateFuncToLLVMConversionPatterns
* createLowerToLLVMPass -> createConvertFuncToLLVMPass
Differential Revision: https://reviews.llvm.org/D120778
This op is added to allow MLIR code running on multi-GPU systems to
select the GPU they want to execute operations on when no GPU is
otherwise specified.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D119883
OwningRewritePatternList has been deprecated for ~10 months now, we can remove
the leftover using directives at this point.
Differential Revision: https://reviews.llvm.org/D118287
In LLVM IR, the GEP indices that correspond to structures are required to be
i32 constants. MLIR models constants as just values defined by special
operations, and there is no verification that it is the case for structure
indices in GEP. Furthermore, some common transformations such as control flow
simplification may lead to the operands becoming non-constant. Make it possible
to directly supply constant values to LLVM GEPOp to guarantee they remain
constant until the translation to LLVM IR. This is not yet a requirement and
the verifier is not modified, this will be introduced separately.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D116757
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Add support for dynamic shared memory for GPU launch ops: add an
optional operand to gpu.launch and gpu.launch_func ops to specify the
amount of "dynamic" shared memory to use. Update lowerings to connect
this operand to the GPU runtime.
Differential Revision: https://reviews.llvm.org/D110800
This commits updates the remaining usages of the ArrayRef<Value> based
matchAndRewrite/rewrite methods in favor of the new OpAdaptor
overload.
Differential Revision: https://reviews.llvm.org/D110360
Conversion to the LLVM dialect is being refactored to be more progressive and
is now performed as a series of independent passes converting different
dialects. These passes may produce `unrealized_conversion_cast` operations that
represent pending conversions between built-in and LLVM dialect types.
Historically, a more monolithic Standard-to-LLVM conversion pass did not need
these casts as all operations were converted in one shot. Previous refactorings
have led to the requirement of running the Standard-to-LLVM conversion pass to
clean up `unrealized_conversion_cast`s even though the IR had no standard
operations in it. The pass must have been also run the last among all to-LLVM
passes, in contradiction with the partial conversion logic. Additionally, the
way it was set up could produce invalid operations by removing casts between
LLVM and built-in types even when the consumer did not accept the uncasted
type, or could lead to cryptic conversion errors (recursive application of the
rewrite pattern on `unrealized_conversion_cast` as a means to indicate failure
to eliminate casts).
In fact, the need to eliminate A->B->A `unrealized_conversion_cast`s is not
specific to to-LLVM conversions and can be factored out into a separate type
reconciliation pass, which is achieved in this commit. While the cast operation
itself has a folder pattern, it is insufficient in most conversion passes as
the folder only applies to the second cast. Without complex legality setup in
the conversion target, the conversion infra will either consider the cast
operations valid and not fold them (a separate canonicalization would be
necessary to trigger the folding), or consider the first cast invalid upon
generation and stop with error. The pattern provided by the reconciliation pass
applies to the first cast operation instead. Furthermore, having a separate
pass makes it clear when `unrealized_conversion_cast`s could not have been
eliminated since it is the only reason why this pass can fail.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109507
The conversion has been incorrectly using the operands of the original
operation instead of the converted operands provided to the matchAndRewrite
call. This may lead to spurious materializations and generally invalid IR if
the producer of the original operands is deleted in the process of conversion.
Reviewed By: csigg
Differential Revision: https://reviews.llvm.org/D109356
Create a gpu memset op and corresponding CUDA and ROCm wrappers.
Reviewed By: herhut, lorenrose1013
Differential Revision: https://reviews.llvm.org/D107548
SymbolRefAttr is fundamentally a base string plus a sequence
of nested references. Instead of storing the string data as
a copies StringRef, store it as an already-uniqued StringAttr.
This makes a lot of things simpler and more efficient because:
1) references to the symbol are already stored as StringAttr's:
there is no need to copy the string data into MLIRContext
multiple times.
2) This allows pointer comparisons instead of string
comparisons (or redundant uniquing) within SymbolTable.cpp.
3) This allows SymbolTable to hold a DenseMap instead of a
StringMap (which again copies the string data and slows
lookup).
This is a moderately invasive patch, so I kept a lot of
compatibility APIs around. It would be nice to explore changing
getName() to return a StringAttr for example (right now you have
to use getNameAttr()), and eliminate things like the StringRef
version of getSymbol.
Differential Revision: https://reviews.llvm.org/D108899
The verifier of the llvm.call operation was not checking for mismatches between
the number of operation results and the number of results in the signature of
the callee. Furthermore, it was possible to construct an llvm.call operation
producing an SSA value of !llvm.void type, which should not exist. Add the
verification and treat !llvm.void result type as absence of call results.
Update the GPU conversions to LLVM that were mistakenly assuming that it was
fine for llvm.call to produce values of !llvm.void type and ensure these calls
do not produce results.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D106937
The dialect-specific cast between builtin (ex-standard) types and LLVM
dialect types was introduced long time before built-in support for
unrealized_conversion_cast. It has a similar purpose, but is restricted
to compatible builtin and LLVM dialect types, which may hamper
progressive lowering and composition with types from other dialects.
Replace llvm.mlir.cast with unrealized_conversion_cast, and drop the
operation that became unnecessary.
Also make unrealized_conversion_cast legal by default in
LLVMConversionTarget as the majority of convesions using it are partial
conversions that actually want the casts to persist in the IR. The
standard-to-llvm conversion, which is still expected to run last, cleans
up the remaining casts standard-to-llvm conversion, which is still
expected to run last, cleans up the remaining casts
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D105880
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625