This commit shuffles SPIR-V code around to better follow MLIR
convention. Specifically,
* Created IR/, Transforms/, Linking/, and Utils/ subdirectories and
moved suitable code inside.
* Created SPIRVEnums.{h|cpp} for SPIR-V C/C++ enums generated from
SPIR-V spec. Previously they are cluttered inside SPIRVTypes.{h|cpp}.
* Fixed include guards in various header files (both .h and .td).
* Moved serialization tests under test/Target/SPIRV.
* Renamed TableGen backend -gen-spirv-op-utils into -gen-spirv-attr-utils
as it is only generating utility functions for attributes.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D93407
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
This revision introduces support for buffer allocation for any named linalg op.
To avoid template instantiating many ops, a new ConversionPattern is created to capture the LinalgOp interface.
Some APIs are updated to remain consistent with MLIR style:
`OwningRewritePatternList * -> OwningRewritePatternList &`
`BufferAssignmentTypeConverter * -> BufferAssignmentTypeConverter &`
Differential revision: https://reviews.llvm.org/D89226
This patch allows to pass the gpu module name to SPIR-V
module during conversion. This has many benefits as we can lookup
converted to SPIR-V kernel in the symbol table.
In order to avoid symbol conflicts, `"__spv__"` is added to the
gpu module name to form the new one.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86384
This change adds initial support needed to generate OpenCL compliant SPIRV.
If Kernel capability is declared then memory model becomes OpenCL.
If Addresses capability is declared then addressing model becomes Physical64.
Additionally for Kernel capability interface variable ABI attributes are not
generated as entry point function is expected to have normal arguments.
Differential Revision: https://reviews.llvm.org/D85196
This revision removes the TypeConverter parameter passed to the apply* methods, and instead moves the responsibility of region type conversion to patterns. The types of a region can be converted using the 'convertRegionTypes' method, which acts similarly to the existing 'applySignatureConversion'. This method ensures that all blocks within, and including those moved into, a region will have the block argument types converted using the provided converter.
This has the benefit of making more of the legalization logic controlled by patterns, instead of being handled explicitly by the driver. It also opens up the possibility to support multiple type conversions at some point in the future.
This revision also adds a new utility class `FailureOr<T>` that provides a LogicalResult friendly facility for returning a failure or a valid result value.
Differential Revision: https://reviews.llvm.org/D81681
Use ::Adaptor alias instead uniformly. Makes the naming more consistent as
adaptor can refer to attributes now too.
Differential Revision: https://reviews.llvm.org/D81789
Add SubgroupId, SubgroupSize and NumSubgroups to GPU dialect ops and add the
lowering of those ops to SPIRV.
Differential Revision: https://reviews.llvm.org/D81042
Multiple places in the code base were erasing Blocks or operations in them
using in-place modifications (`Block::erase` or `Block::clear`) unknown to
ConversionPatternRewriter. These operations could not be undone if the pattern
failed and could lead to inconsistent in-memory state of the IR with dangling
pointers. Use `ConversionPatternRewriter::eraseOp` and `::eraseBlock` instead.
Differential Revision: https://reviews.llvm.org/D80136
have abi attributes.
To ensure there is no conflict, use the default ABI only when none of
the arguments have the spv.interface_var_abi attribute. This also
implies that if one of the arguments has a spv.interface_var_abi
attribute, all of them should have it as well.
Differential Revision: https://reviews.llvm.org/D77232
This dialect contains various structured control flow operaitons, not only
loops, reflect this in the name. Drop the Ops suffix for consistency with other
dialects.
Note that this only moves the files and changes the C++ namespace from 'loop'
to 'scf'. The visible IR prefix remains the same and will be updated
separately. The conversions will also be updated separately.
Differential Revision: https://reviews.llvm.org/D79578
Previously in SPIRVTypeConverter, we always convert memref types
to StorageBuffer regardless of their memory spaces. This commit
fixes that to let the conversion to look into memory space
properly. For this purpose, a mapping between SPIR-V storage class
and memref memory space is introduced. The mapping is arbitary
decided at the moment and the hope is that we can leverage
string memory space later to be more clear.
Now spv.interface_var_abi cannot contain storage class unless it's
attached to a scalar value, where we need the storage class as side
channel information. Verifications and tests are properly adjusted.
Differential Revision: https://reviews.llvm.org/D76241
This commits changes the definition of spv.module to use the #spv.vce
attribute for specifying (version, capabilities, extensions) triple
so that we can have better API and custom assembly form. Since now
we have proper modelling of the triple, (de)serialization is wired up
to use them.
With the new UpdateVCEPass, we don't need to manually specify the
required extensions and capabilities anymore when creating a spv.module.
One just need to call UpdateVCEPass before serialization to get the
needed version/extensions/capabilities.
Differential Revision: https://reviews.llvm.org/D75872
This patch implements the RFCs proposed here:
https://llvm.discourse.group/t/rfc-modify-ifop-in-loop-dialect-to-yield-values/463https://llvm.discourse.group/t/rfc-adding-operands-and-results-to-loop-for/459/19.
It introduces the following changes:
- All Loop Ops region, except for ReduceOp, terminate with a YieldOp.
- YieldOp can have variadice operands that is used to return values out of IfOp and ForOp regions.
- Change IfOp and ForOp syntax and representation to define values.
- Add unit-tests and update .td documentation.
- YieldOp is a terminator to loop.for/if/parallel
- YieldOp custom parser and printer
Lowering is not supported at the moment, and will be in a follow-up PR.
Thanks.
Reviewed By: bondhugula, nicolasvasilache, rriddle
Differential Revision: https://reviews.llvm.org/D74174
Thus far we have been using builtin func op to model SPIR-V functions.
It was because builtin func op used to have special treatment in
various parts of the core codebase (e.g., pass pipelines, etc.) and
it's easy to bootstrap the development of the SPIR-V dialect. But
nowadays with general op concepts and region support we don't have
such limitations and it's time to tighten the SPIR-V dialect for
completeness.
This commits introduces a spv.func op to properly model SPIR-V
functions. Compared to builtin func op, it can provide the following
benefits:
* We can control the full op so we can integrate SPIR-V information
bits (e.g., function control) in a more integrated way and define
our own assembly form and enforcing better verification.
* We can have a better dialect and library boundary. At the current
moment only functions are modelled with an external op. With this
change, all ops modelling SPIR-V concpets will be spv.* ops and
registered to the SPIR-V dialect.
* We don't need to special-case func op anymore when creating
ConversionTarget declaring SPIR-V dialect as legal. This is quite
important given we'll see more and more conversions in the future.
In the process, bumps a few FuncOp methods to the FunctionLike trait.
Differential Revision: https://reviews.llvm.org/D74226
We have spv.entry_point_abi for specifying the local workgroup size.
It should be decorated onto input gpu.func ops to drive the SPIR-V
CodeGen to generate the proper SPIR-V module execution mode. Compared
to using command-line options for specifying the configuration, using
attributes also has the benefits that 1) we are now able to use
different local workgroup for different entry points and 2) the
tests contains the configuration directly.
Differential Revision: https://reviews.llvm.org/D74012
The existing lowering of gpu.block_dim added a global variable with
the WorkGroupSize decoration. This raises an error within
Vulkan/SPIR-V validation since Vulkan requires this to have a constant
initializer. This is not yet supported in SPIR-V dialect. Changing the
lowering to return the workgroup size as a constant value instead,
obtained from spv.entry_point_abi attribute gets around the issue for
now. The validation goes through since the workgroup size is specified
using spv.execution_mode operation.
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reverts "Revert "[mlir] Create a gpu.module operation for the GPU Dialect.""
This reverts commit ac446302ca4145cdc89f377c0c364c29ee303be5 after
fixing internal Google issues.
This additionally updates ROCDL lowering to use the new gpu.module.
Reviewers: herhut, mravishankar, antiagainst, nicolasvasilache
Subscribers: jholewinski, mgorny, mehdi_amini, jpienaar, burmako, shauheen, csigg, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits, mravishankar, rriddle, antiagainst, bkramer
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72921
When lowering `loop.if` to `spv.selection` we explicitly create
a selection header block before the control flow diverges and a
merge block where control flow subsequently converges.
Differential Revision: https://reviews.llvm.org/D72836
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reviewers: herhut, mravishankar, antiagainst, rriddle
Reviewed By: herhut, antiagainst, rriddle
Subscribers: liufengdb, aartbik, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72336
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
* Fixes use of anonymous namespace for static methods.
* Uses explicit qualifiers(mlir::) instead of wrapping the definition with the namespace.
PiperOrigin-RevId: 286222654
This updates the lowering pipelines from the GPU dialect to lower-level
dialects (NVVM, SPIRV) to use the recently introduced gpu.func operation
instead of a standard function annotated with an attribute. In particular, the
kernel outlining is updated to produce gpu.func instead of std.func and the
individual conversions are updated to consume gpu.funcs and disallow standard
funcs after legalization, if necessary. The attribute "gpu.kernel" is preserved
in the generic syntax, but can also be used with the custom syntax on
gpu.funcs. The special kind of function for GPU allows one to use additional
features such as memory attribution.
PiperOrigin-RevId: 285822272
The existing GPU to SPIR-V lowering created a spv.module for every
function with gpu.kernel attribute. A better approach is to lower the
module that the function lives in (which has the attribute
gpu.kernel_module) to a spv.module operation. This better captures the
host-device separation modeled by GPU dialect and simplifies the
lowering as well.
PiperOrigin-RevId: 284574688
SPIR-V/Vulkan spec requires the workgroups size to be specified with
the spv.ExecutionMode operation. This was hard-wired to be set to a
particular value. It is now changed to be configurable by clients of
the pass or of the patterns that implement the lowering from GPU to
SPIRV.
PiperOrigin-RevId: 284017482
To simplify the lowering into SPIR-V, while still respecting the ABI
requirements of SPIR-V/Vulkan, split the process into two
1) While lowering a function to SPIR-V (when the function is an entry
point function), allow specifying attributes on arguments and
function itself that describe the ABI of the function.
2) Add a pass that materializes the ABI described in the function.
Two attributes are needed.
1) Attribute on arguments of the entry point function that describe
the descriptor_set, binding, storage class, etc, of the
spv.globalVariable this argument will be replaced by
2) Attribute on function that specifies workgroup size, etc. (for now
only workgroup size).
Add the pass -spirv-lower-abi-attrs to materialize the ABI described
by the attributes.
This change makes the SPIRVBasicTypeConverter class unnecessary and is
removed, further simplifying the SPIR-V lowering path.
PiperOrigin-RevId: 282387587
Refactoring the conversion from StandardOps/GPU dialect to SPIR-V
dialect:
1) Move the SPIRVTypeConversion and SPIRVOpLowering class into SPIR-V
dialect.
2) Add header files that expose functions to add patterns for the
dialects to SPIR-V lowering, as well as a pass that does the
dialect to SPIR-V lowering.
3) Make SPIRVOpLowering derive from OpLowering class.
PiperOrigin-RevId: 280486871