Files
clang-p2996/libc/utils/MPFRWrapper/MPFRUtils.cpp
Alex Brachet 04c681d195 [libc] Specify rounding mode for strto[f|d] tests
The specified rounding mode will be used and restored
to what it was before the test ran.

Additionally, it moves ForceRoundingMode and RoundingMode
out of MPFRUtils to be used in more places.

Differential Revision: https://reviews.llvm.org/D129685
2022-07-13 20:20:30 +00:00

951 lines
34 KiB
C++

//===-- Utils which wrap MPFR ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MPFRUtils.h"
#include "src/__support/CPP/StringView.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PlatformDefs.h"
#include "utils/UnitTest/FPMatcher.h"
#include <cmath>
#include <fenv.h>
#include <memory>
#include <sstream>
#include <stdint.h>
#include <string>
#ifdef CUSTOM_MPFR_INCLUDER
// Some downstream repos are monoliths carrying MPFR sources in their third
// party directory. In such repos, including the MPFR header as
// `#include <mpfr.h>` is either disallowed or not possible. If that is the
// case, a file named `CustomMPFRIncluder.h` should be added through which the
// MPFR header can be included in manner allowed in that repo.
#include "CustomMPFRIncluder.h"
#else
#include <mpfr.h>
#endif
template <typename T> using FPBits = __llvm_libc::fputil::FPBits<T>;
namespace __llvm_libc {
namespace testing {
namespace mpfr {
template <typename T> struct Precision;
template <> struct Precision<float> {
static constexpr unsigned int VALUE = 24;
};
template <> struct Precision<double> {
static constexpr unsigned int VALUE = 53;
};
#if defined(LONG_DOUBLE_IS_DOUBLE)
template <> struct Precision<long double> {
static constexpr unsigned int VALUE = 53;
};
#elif defined(SPECIAL_X86_LONG_DOUBLE)
template <> struct Precision<long double> {
static constexpr unsigned int VALUE = 64;
};
#else
template <> struct Precision<long double> {
static constexpr unsigned int VALUE = 113;
};
#endif
// A precision value which allows sufficiently large additional
// precision compared to the floating point precision.
template <typename T> struct ExtraPrecision;
template <> struct ExtraPrecision<float> {
static constexpr unsigned int VALUE = 128;
};
template <> struct ExtraPrecision<double> {
static constexpr unsigned int VALUE = 256;
};
template <> struct ExtraPrecision<long double> {
static constexpr unsigned int VALUE = 256;
};
// If the ulp tolerance is less than or equal to 0.5, we would check that the
// result is rounded correctly with respect to the rounding mode by using the
// same precision as the inputs.
template <typename T>
static inline unsigned int get_precision(double ulp_tolerance) {
if (ulp_tolerance <= 0.5) {
return Precision<T>::VALUE;
} else {
return ExtraPrecision<T>::VALUE;
}
}
static inline mpfr_rnd_t get_mpfr_rounding_mode(RoundingMode mode) {
switch (mode) {
case RoundingMode::Upward:
return MPFR_RNDU;
break;
case RoundingMode::Downward:
return MPFR_RNDD;
break;
case RoundingMode::TowardZero:
return MPFR_RNDZ;
break;
case RoundingMode::Nearest:
return MPFR_RNDN;
break;
}
}
class MPFRNumber {
unsigned int mpfr_precision;
mpfr_rnd_t mpfr_rounding;
mpfr_t value;
public:
MPFRNumber() : mpfr_precision(256), mpfr_rounding(MPFR_RNDN) {
mpfr_init2(value, mpfr_precision);
}
// We use explicit EnableIf specializations to disallow implicit
// conversions. Implicit conversions can potentially lead to loss of
// precision.
template <typename XType,
cpp::EnableIfType<cpp::IsSame<float, XType>::Value, int> = 0>
explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE,
RoundingMode rounding = RoundingMode::Nearest)
: mpfr_precision(precision),
mpfr_rounding(get_mpfr_rounding_mode(rounding)) {
mpfr_init2(value, mpfr_precision);
mpfr_set_flt(value, x, mpfr_rounding);
}
template <typename XType,
cpp::EnableIfType<cpp::IsSame<double, XType>::Value, int> = 0>
explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE,
RoundingMode rounding = RoundingMode::Nearest)
: mpfr_precision(precision),
mpfr_rounding(get_mpfr_rounding_mode(rounding)) {
mpfr_init2(value, mpfr_precision);
mpfr_set_d(value, x, mpfr_rounding);
}
template <typename XType,
cpp::EnableIfType<cpp::IsSame<long double, XType>::Value, int> = 0>
explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE,
RoundingMode rounding = RoundingMode::Nearest)
: mpfr_precision(precision),
mpfr_rounding(get_mpfr_rounding_mode(rounding)) {
mpfr_init2(value, mpfr_precision);
mpfr_set_ld(value, x, mpfr_rounding);
}
template <typename XType,
cpp::EnableIfType<cpp::IsIntegral<XType>::Value, int> = 0>
explicit MPFRNumber(XType x, int precision = ExtraPrecision<float>::VALUE,
RoundingMode rounding = RoundingMode::Nearest)
: mpfr_precision(precision),
mpfr_rounding(get_mpfr_rounding_mode(rounding)) {
mpfr_init2(value, mpfr_precision);
mpfr_set_sj(value, x, mpfr_rounding);
}
MPFRNumber(const MPFRNumber &other)
: mpfr_precision(other.mpfr_precision),
mpfr_rounding(other.mpfr_rounding) {
mpfr_init2(value, mpfr_precision);
mpfr_set(value, other.value, mpfr_rounding);
}
~MPFRNumber() { mpfr_clear(value); }
MPFRNumber &operator=(const MPFRNumber &rhs) {
mpfr_precision = rhs.mpfr_precision;
mpfr_rounding = rhs.mpfr_rounding;
mpfr_set(value, rhs.value, mpfr_rounding);
return *this;
}
MPFRNumber abs() const {
MPFRNumber result(*this);
mpfr_abs(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber ceil() const {
MPFRNumber result(*this);
mpfr_ceil(result.value, value);
return result;
}
MPFRNumber cos() const {
MPFRNumber result(*this);
mpfr_cos(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber exp() const {
MPFRNumber result(*this);
mpfr_exp(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber exp2() const {
MPFRNumber result(*this);
mpfr_exp2(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber expm1() const {
MPFRNumber result(*this);
mpfr_expm1(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber floor() const {
MPFRNumber result(*this);
mpfr_floor(result.value, value);
return result;
}
MPFRNumber fmod(const MPFRNumber &b) {
MPFRNumber result(*this);
mpfr_fmod(result.value, value, b.value, mpfr_rounding);
return result;
}
MPFRNumber frexp(int &exp) {
MPFRNumber result(*this);
mpfr_exp_t resultExp;
mpfr_frexp(&resultExp, result.value, value, mpfr_rounding);
exp = resultExp;
return result;
}
MPFRNumber hypot(const MPFRNumber &b) {
MPFRNumber result(*this);
mpfr_hypot(result.value, value, b.value, mpfr_rounding);
return result;
}
MPFRNumber log() const {
MPFRNumber result(*this);
mpfr_log(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber log2() const {
MPFRNumber result(*this);
mpfr_log2(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber log10() const {
MPFRNumber result(*this);
mpfr_log10(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber log1p() const {
MPFRNumber result(*this);
mpfr_log1p(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber remquo(const MPFRNumber &divisor, int &quotient) {
MPFRNumber remainder(*this);
long q;
mpfr_remquo(remainder.value, &q, value, divisor.value, mpfr_rounding);
quotient = q;
return remainder;
}
MPFRNumber round() const {
MPFRNumber result(*this);
mpfr_round(result.value, value);
return result;
}
bool round_to_long(long &result) const {
// We first calculate the rounded value. This way, when converting
// to long using mpfr_get_si, the rounding direction of MPFR_RNDN
// (or any other rounding mode), does not have an influence.
MPFRNumber roundedValue = round();
mpfr_clear_erangeflag();
result = mpfr_get_si(roundedValue.value, MPFR_RNDN);
return mpfr_erangeflag_p();
}
bool round_to_long(mpfr_rnd_t rnd, long &result) const {
MPFRNumber rint_result(*this);
mpfr_rint(rint_result.value, value, rnd);
return rint_result.round_to_long(result);
}
MPFRNumber rint(mpfr_rnd_t rnd) const {
MPFRNumber result(*this);
mpfr_rint(result.value, value, rnd);
return result;
}
MPFRNumber mod_2pi() const {
MPFRNumber result(0.0, 1280);
MPFRNumber _2pi(0.0, 1280);
mpfr_const_pi(_2pi.value, MPFR_RNDN);
mpfr_mul_si(_2pi.value, _2pi.value, 2, MPFR_RNDN);
mpfr_fmod(result.value, value, _2pi.value, MPFR_RNDN);
return result;
}
MPFRNumber mod_pi_over_2() const {
MPFRNumber result(0.0, 1280);
MPFRNumber pi_over_2(0.0, 1280);
mpfr_const_pi(pi_over_2.value, MPFR_RNDN);
mpfr_mul_d(pi_over_2.value, pi_over_2.value, 0.5, MPFR_RNDN);
mpfr_fmod(result.value, value, pi_over_2.value, MPFR_RNDN);
return result;
}
MPFRNumber mod_pi_over_4() const {
MPFRNumber result(0.0, 1280);
MPFRNumber pi_over_4(0.0, 1280);
mpfr_const_pi(pi_over_4.value, MPFR_RNDN);
mpfr_mul_d(pi_over_4.value, pi_over_4.value, 0.25, MPFR_RNDN);
mpfr_fmod(result.value, value, pi_over_4.value, MPFR_RNDN);
return result;
}
MPFRNumber sin() const {
MPFRNumber result(*this);
mpfr_sin(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber sqrt() const {
MPFRNumber result(*this);
mpfr_sqrt(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber tan() const {
MPFRNumber result(*this);
mpfr_tan(result.value, value, mpfr_rounding);
return result;
}
MPFRNumber trunc() const {
MPFRNumber result(*this);
mpfr_trunc(result.value, value);
return result;
}
MPFRNumber fma(const MPFRNumber &b, const MPFRNumber &c) {
MPFRNumber result(*this);
mpfr_fma(result.value, value, b.value, c.value, mpfr_rounding);
return result;
}
std::string str() const {
// 200 bytes should be more than sufficient to hold a 100-digit number
// plus additional bytes for the decimal point, '-' sign etc.
constexpr size_t printBufSize = 200;
char buffer[printBufSize];
mpfr_snprintf(buffer, printBufSize, "%100.50Rf", value);
cpp::StringView view(buffer);
view = view.trim(' ');
return std::string(view.data());
}
// These functions are useful for debugging.
template <typename T> T as() const;
void dump(const char *msg) const { mpfr_printf("%s%.128Rf\n", msg, value); }
// Return the ULP (units-in-the-last-place) difference between the
// stored MPFR and a floating point number.
//
// We define ULP difference as follows:
// If exponents of this value and the |input| are same, then:
// ULP(this_value, input) = abs(this_value - input) / eps(input)
// else:
// max = max(abs(this_value), abs(input))
// min = min(abs(this_value), abs(input))
// maxExponent = exponent(max)
// ULP(this_value, input) = (max - 2^maxExponent) / eps(max) +
// (2^maxExponent - min) / eps(min)
//
// Remarks:
// 1. A ULP of 0.0 will imply that the value is correctly rounded.
// 2. We expect that this value and the value to be compared (the [input]
// argument) are reasonable close, and we will provide an upper bound
// of ULP value for testing. Morever, most of the fractional parts of
// ULP value do not matter much, so using double as the return type
// should be good enough.
// 3. For close enough values (values which don't diff in their exponent by
// not more than 1), a ULP difference of N indicates a bit distance
// of N between this number and [input].
// 4. A values of +0.0 and -0.0 are treated as equal.
template <typename T>
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, double> ulp(T input) {
T thisAsT = as<T>();
if (thisAsT == input)
return T(0.0);
int thisExponent = fputil::FPBits<T>(thisAsT).get_exponent();
int inputExponent = fputil::FPBits<T>(input).get_exponent();
// Adjust the exponents for denormal numbers.
if (fputil::FPBits<T>(thisAsT).get_unbiased_exponent() == 0)
++thisExponent;
if (fputil::FPBits<T>(input).get_unbiased_exponent() == 0)
++inputExponent;
if (thisAsT * input < 0 || thisExponent == inputExponent) {
MPFRNumber inputMPFR(input);
mpfr_sub(inputMPFR.value, value, inputMPFR.value, MPFR_RNDN);
mpfr_abs(inputMPFR.value, inputMPFR.value, MPFR_RNDN);
mpfr_mul_2si(inputMPFR.value, inputMPFR.value,
-thisExponent + int(fputil::MantissaWidth<T>::VALUE),
MPFR_RNDN);
return inputMPFR.as<double>();
}
// If the control reaches here, it means that this number and input are
// of the same sign but different exponent. In such a case, ULP error is
// calculated as sum of two parts.
thisAsT = std::abs(thisAsT);
input = std::abs(input);
T min = thisAsT > input ? input : thisAsT;
T max = thisAsT > input ? thisAsT : input;
int minExponent = fputil::FPBits<T>(min).get_exponent();
int maxExponent = fputil::FPBits<T>(max).get_exponent();
// Adjust the exponents for denormal numbers.
if (fputil::FPBits<T>(min).get_unbiased_exponent() == 0)
++minExponent;
if (fputil::FPBits<T>(max).get_unbiased_exponent() == 0)
++maxExponent;
MPFRNumber minMPFR(min);
MPFRNumber maxMPFR(max);
MPFRNumber pivot(uint32_t(1));
mpfr_mul_2si(pivot.value, pivot.value, maxExponent, MPFR_RNDN);
mpfr_sub(minMPFR.value, pivot.value, minMPFR.value, MPFR_RNDN);
mpfr_mul_2si(minMPFR.value, minMPFR.value,
-minExponent + int(fputil::MantissaWidth<T>::VALUE),
MPFR_RNDN);
mpfr_sub(maxMPFR.value, maxMPFR.value, pivot.value, MPFR_RNDN);
mpfr_mul_2si(maxMPFR.value, maxMPFR.value,
-maxExponent + int(fputil::MantissaWidth<T>::VALUE),
MPFR_RNDN);
mpfr_add(minMPFR.value, minMPFR.value, maxMPFR.value, MPFR_RNDN);
return minMPFR.as<double>();
}
};
template <> float MPFRNumber::as<float>() const {
return mpfr_get_flt(value, mpfr_rounding);
}
template <> double MPFRNumber::as<double>() const {
return mpfr_get_d(value, mpfr_rounding);
}
template <> long double MPFRNumber::as<long double>() const {
return mpfr_get_ld(value, mpfr_rounding);
}
namespace internal {
template <typename InputType>
cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber>
unary_operation(Operation op, InputType input, unsigned int precision,
RoundingMode rounding) {
MPFRNumber mpfrInput(input, precision, rounding);
switch (op) {
case Operation::Abs:
return mpfrInput.abs();
case Operation::Ceil:
return mpfrInput.ceil();
case Operation::Cos:
return mpfrInput.cos();
case Operation::Exp:
return mpfrInput.exp();
case Operation::Exp2:
return mpfrInput.exp2();
case Operation::Expm1:
return mpfrInput.expm1();
case Operation::Floor:
return mpfrInput.floor();
case Operation::Log:
return mpfrInput.log();
case Operation::Log2:
return mpfrInput.log2();
case Operation::Log10:
return mpfrInput.log10();
case Operation::Log1p:
return mpfrInput.log1p();
case Operation::Mod2PI:
return mpfrInput.mod_2pi();
case Operation::ModPIOver2:
return mpfrInput.mod_pi_over_2();
case Operation::ModPIOver4:
return mpfrInput.mod_pi_over_4();
case Operation::Round:
return mpfrInput.round();
case Operation::Sin:
return mpfrInput.sin();
case Operation::Sqrt:
return mpfrInput.sqrt();
case Operation::Tan:
return mpfrInput.tan();
case Operation::Trunc:
return mpfrInput.trunc();
default:
__builtin_unreachable();
}
}
template <typename InputType>
cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber>
unary_operation_two_outputs(Operation op, InputType input, int &output,
unsigned int precision, RoundingMode rounding) {
MPFRNumber mpfrInput(input, precision, rounding);
switch (op) {
case Operation::Frexp:
return mpfrInput.frexp(output);
default:
__builtin_unreachable();
}
}
template <typename InputType>
cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber>
binary_operation_one_output(Operation op, InputType x, InputType y,
unsigned int precision, RoundingMode rounding) {
MPFRNumber inputX(x, precision, rounding);
MPFRNumber inputY(y, precision, rounding);
switch (op) {
case Operation::Fmod:
return inputX.fmod(inputY);
case Operation::Hypot:
return inputX.hypot(inputY);
default:
__builtin_unreachable();
}
}
template <typename InputType>
cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber>
binary_operation_two_outputs(Operation op, InputType x, InputType y,
int &output, unsigned int precision,
RoundingMode rounding) {
MPFRNumber inputX(x, precision, rounding);
MPFRNumber inputY(y, precision, rounding);
switch (op) {
case Operation::RemQuo:
return inputX.remquo(inputY, output);
default:
__builtin_unreachable();
}
}
template <typename InputType>
cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber>
ternary_operation_one_output(Operation op, InputType x, InputType y,
InputType z, unsigned int precision,
RoundingMode rounding) {
// For FMA function, we just need to compare with the mpfr_fma with the same
// precision as InputType. Using higher precision as the intermediate results
// to compare might incorrectly fail due to double-rounding errors.
MPFRNumber inputX(x, precision, rounding);
MPFRNumber inputY(y, precision, rounding);
MPFRNumber inputZ(z, precision, rounding);
switch (op) {
case Operation::Fma:
return inputX.fma(inputY, inputZ);
default:
__builtin_unreachable();
}
}
// Remark: For all the explain_*_error functions, we will use std::stringstream
// to build the complete error messages before sending it to the outstream `OS`
// once at the end. This will stop the error messages from interleaving when
// the tests are running concurrently.
template <typename T>
void explain_unary_operation_single_output_error(Operation op, T input,
T matchValue,
double ulp_tolerance,
RoundingMode rounding,
testutils::StreamWrapper &OS) {
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfrInput(input, precision);
MPFRNumber mpfr_result;
mpfr_result = unary_operation(op, input, precision, rounding);
MPFRNumber mpfrMatchValue(matchValue);
std::stringstream ss;
ss << "Match value not within tolerance value of MPFR result:\n"
<< " Input decimal: " << mpfrInput.str() << '\n';
__llvm_libc::fputil::testing::describeValue(" Input bits: ", input, ss);
ss << '\n' << " Match decimal: " << mpfrMatchValue.str() << '\n';
__llvm_libc::fputil::testing::describeValue(" Match bits: ", matchValue,
ss);
ss << '\n' << " MPFR result: " << mpfr_result.str() << '\n';
__llvm_libc::fputil::testing::describeValue(
" MPFR rounded: ", mpfr_result.as<T>(), ss);
ss << '\n';
ss << " ULP error: " << std::to_string(mpfr_result.ulp(matchValue))
<< '\n';
OS << ss.str();
}
template void
explain_unary_operation_single_output_error<float>(Operation op, float, float,
double, RoundingMode,
testutils::StreamWrapper &);
template void explain_unary_operation_single_output_error<double>(
Operation op, double, double, double, RoundingMode,
testutils::StreamWrapper &);
template void explain_unary_operation_single_output_error<long double>(
Operation op, long double, long double, double, RoundingMode,
testutils::StreamWrapper &);
template <typename T>
void explain_unary_operation_two_outputs_error(
Operation op, T input, const BinaryOutput<T> &libc_result,
double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) {
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfrInput(input, precision);
int mpfrIntResult;
MPFRNumber mpfr_result = unary_operation_two_outputs(op, input, mpfrIntResult,
precision, rounding);
std::stringstream ss;
if (mpfrIntResult != libc_result.i) {
ss << "MPFR integral result: " << mpfrIntResult << '\n'
<< "Libc integral result: " << libc_result.i << '\n';
} else {
ss << "Integral result from libc matches integral result from MPFR.\n";
}
MPFRNumber mpfrMatchValue(libc_result.f);
ss << "Libc floating point result is not within tolerance value of the MPFR "
<< "result.\n\n";
ss << " Input decimal: " << mpfrInput.str() << "\n\n";
ss << "Libc floating point value: " << mpfrMatchValue.str() << '\n';
__llvm_libc::fputil::testing::describeValue(
" Libc floating point bits: ", libc_result.f, ss);
ss << "\n\n";
ss << " MPFR result: " << mpfr_result.str() << '\n';
__llvm_libc::fputil::testing::describeValue(
" MPFR rounded: ", mpfr_result.as<T>(), ss);
ss << '\n'
<< " ULP error: "
<< std::to_string(mpfr_result.ulp(libc_result.f)) << '\n';
OS << ss.str();
}
template void explain_unary_operation_two_outputs_error<float>(
Operation, float, const BinaryOutput<float> &, double, RoundingMode,
testutils::StreamWrapper &);
template void explain_unary_operation_two_outputs_error<double>(
Operation, double, const BinaryOutput<double> &, double, RoundingMode,
testutils::StreamWrapper &);
template void explain_unary_operation_two_outputs_error<long double>(
Operation, long double, const BinaryOutput<long double> &, double,
RoundingMode, testutils::StreamWrapper &);
template <typename T>
void explain_binary_operation_two_outputs_error(
Operation op, const BinaryInput<T> &input,
const BinaryOutput<T> &libc_result, double ulp_tolerance,
RoundingMode rounding, testutils::StreamWrapper &OS) {
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfrX(input.x, precision);
MPFRNumber mpfrY(input.y, precision);
int mpfrIntResult;
MPFRNumber mpfr_result = binary_operation_two_outputs(
op, input.x, input.y, mpfrIntResult, precision, rounding);
MPFRNumber mpfrMatchValue(libc_result.f);
std::stringstream ss;
ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n'
<< "MPFR integral result: " << mpfrIntResult << '\n'
<< "Libc integral result: " << libc_result.i << '\n'
<< "Libc floating point result: " << mpfrMatchValue.str() << '\n'
<< " MPFR result: " << mpfr_result.str() << '\n';
__llvm_libc::fputil::testing::describeValue(
"Libc floating point result bits: ", libc_result.f, ss);
__llvm_libc::fputil::testing::describeValue(
" MPFR rounded bits: ", mpfr_result.as<T>(), ss);
ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result.f)) << '\n';
OS << ss.str();
}
template void explain_binary_operation_two_outputs_error<float>(
Operation, const BinaryInput<float> &, const BinaryOutput<float> &, double,
RoundingMode, testutils::StreamWrapper &);
template void explain_binary_operation_two_outputs_error<double>(
Operation, const BinaryInput<double> &, const BinaryOutput<double> &,
double, RoundingMode, testutils::StreamWrapper &);
template void explain_binary_operation_two_outputs_error<long double>(
Operation, const BinaryInput<long double> &,
const BinaryOutput<long double> &, double, RoundingMode,
testutils::StreamWrapper &);
template <typename T>
void explain_binary_operation_one_output_error(
Operation op, const BinaryInput<T> &input, T libc_result,
double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) {
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfrX(input.x, precision);
MPFRNumber mpfrY(input.y, precision);
FPBits<T> xbits(input.x);
FPBits<T> ybits(input.y);
MPFRNumber mpfr_result =
binary_operation_one_output(op, input.x, input.y, precision, rounding);
MPFRNumber mpfrMatchValue(libc_result);
std::stringstream ss;
ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n';
__llvm_libc::fputil::testing::describeValue("First input bits: ", input.x,
ss);
__llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y,
ss);
ss << "Libc result: " << mpfrMatchValue.str() << '\n'
<< "MPFR result: " << mpfr_result.str() << '\n';
__llvm_libc::fputil::testing::describeValue(
"Libc floating point result bits: ", libc_result, ss);
__llvm_libc::fputil::testing::describeValue(
" MPFR rounded bits: ", mpfr_result.as<T>(), ss);
ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result)) << '\n';
OS << ss.str();
}
template void explain_binary_operation_one_output_error<float>(
Operation, const BinaryInput<float> &, float, double, RoundingMode,
testutils::StreamWrapper &);
template void explain_binary_operation_one_output_error<double>(
Operation, const BinaryInput<double> &, double, double, RoundingMode,
testutils::StreamWrapper &);
template void explain_binary_operation_one_output_error<long double>(
Operation, const BinaryInput<long double> &, long double, double,
RoundingMode, testutils::StreamWrapper &);
template <typename T>
void explain_ternary_operation_one_output_error(
Operation op, const TernaryInput<T> &input, T libc_result,
double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) {
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfrX(input.x, precision);
MPFRNumber mpfrY(input.y, precision);
MPFRNumber mpfrZ(input.z, precision);
FPBits<T> xbits(input.x);
FPBits<T> ybits(input.y);
FPBits<T> zbits(input.z);
MPFRNumber mpfr_result = ternary_operation_one_output(
op, input.x, input.y, input.z, precision, rounding);
MPFRNumber mpfrMatchValue(libc_result);
std::stringstream ss;
ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str()
<< " z: " << mpfrZ.str() << '\n';
__llvm_libc::fputil::testing::describeValue("First input bits: ", input.x,
ss);
__llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y,
ss);
__llvm_libc::fputil::testing::describeValue("Third input bits: ", input.z,
ss);
ss << "Libc result: " << mpfrMatchValue.str() << '\n'
<< "MPFR result: " << mpfr_result.str() << '\n';
__llvm_libc::fputil::testing::describeValue(
"Libc floating point result bits: ", libc_result, ss);
__llvm_libc::fputil::testing::describeValue(
" MPFR rounded bits: ", mpfr_result.as<T>(), ss);
ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result)) << '\n';
OS << ss.str();
}
template void explain_ternary_operation_one_output_error<float>(
Operation, const TernaryInput<float> &, float, double, RoundingMode,
testutils::StreamWrapper &);
template void explain_ternary_operation_one_output_error<double>(
Operation, const TernaryInput<double> &, double, double, RoundingMode,
testutils::StreamWrapper &);
template void explain_ternary_operation_one_output_error<long double>(
Operation, const TernaryInput<long double> &, long double, double,
RoundingMode, testutils::StreamWrapper &);
template <typename T>
bool compare_unary_operation_single_output(Operation op, T input, T libc_result,
double ulp_tolerance,
RoundingMode rounding) {
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfr_result;
mpfr_result = unary_operation(op, input, precision, rounding);
double ulp = mpfr_result.ulp(libc_result);
return (ulp <= ulp_tolerance);
}
template bool compare_unary_operation_single_output<float>(Operation, float,
float, double,
RoundingMode);
template bool compare_unary_operation_single_output<double>(Operation, double,
double, double,
RoundingMode);
template bool compare_unary_operation_single_output<long double>(
Operation, long double, long double, double, RoundingMode);
template <typename T>
bool compare_unary_operation_two_outputs(Operation op, T input,
const BinaryOutput<T> &libc_result,
double ulp_tolerance,
RoundingMode rounding) {
int mpfrIntResult;
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfr_result = unary_operation_two_outputs(op, input, mpfrIntResult,
precision, rounding);
double ulp = mpfr_result.ulp(libc_result.f);
if (mpfrIntResult != libc_result.i)
return false;
return (ulp <= ulp_tolerance);
}
template bool compare_unary_operation_two_outputs<float>(
Operation, float, const BinaryOutput<float> &, double, RoundingMode);
template bool compare_unary_operation_two_outputs<double>(
Operation, double, const BinaryOutput<double> &, double, RoundingMode);
template bool compare_unary_operation_two_outputs<long double>(
Operation, long double, const BinaryOutput<long double> &, double,
RoundingMode);
template <typename T>
bool compare_binary_operation_two_outputs(Operation op,
const BinaryInput<T> &input,
const BinaryOutput<T> &libc_result,
double ulp_tolerance,
RoundingMode rounding) {
int mpfrIntResult;
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfr_result = binary_operation_two_outputs(
op, input.x, input.y, mpfrIntResult, precision, rounding);
double ulp = mpfr_result.ulp(libc_result.f);
if (mpfrIntResult != libc_result.i) {
if (op == Operation::RemQuo) {
if ((0x7 & mpfrIntResult) != (0x7 & libc_result.i))
return false;
} else {
return false;
}
}
return (ulp <= ulp_tolerance);
}
template bool compare_binary_operation_two_outputs<float>(
Operation, const BinaryInput<float> &, const BinaryOutput<float> &, double,
RoundingMode);
template bool compare_binary_operation_two_outputs<double>(
Operation, const BinaryInput<double> &, const BinaryOutput<double> &,
double, RoundingMode);
template bool compare_binary_operation_two_outputs<long double>(
Operation, const BinaryInput<long double> &,
const BinaryOutput<long double> &, double, RoundingMode);
template <typename T>
bool compare_binary_operation_one_output(Operation op,
const BinaryInput<T> &input,
T libc_result, double ulp_tolerance,
RoundingMode rounding) {
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfr_result =
binary_operation_one_output(op, input.x, input.y, precision, rounding);
double ulp = mpfr_result.ulp(libc_result);
return (ulp <= ulp_tolerance);
}
template bool compare_binary_operation_one_output<float>(
Operation, const BinaryInput<float> &, float, double, RoundingMode);
template bool compare_binary_operation_one_output<double>(
Operation, const BinaryInput<double> &, double, double, RoundingMode);
template bool compare_binary_operation_one_output<long double>(
Operation, const BinaryInput<long double> &, long double, double,
RoundingMode);
template <typename T>
bool compare_ternary_operation_one_output(Operation op,
const TernaryInput<T> &input,
T libc_result, double ulp_tolerance,
RoundingMode rounding) {
unsigned int precision = get_precision<T>(ulp_tolerance);
MPFRNumber mpfr_result = ternary_operation_one_output(
op, input.x, input.y, input.z, precision, rounding);
double ulp = mpfr_result.ulp(libc_result);
return (ulp <= ulp_tolerance);
}
template bool compare_ternary_operation_one_output<float>(
Operation, const TernaryInput<float> &, float, double, RoundingMode);
template bool compare_ternary_operation_one_output<double>(
Operation, const TernaryInput<double> &, double, double, RoundingMode);
template bool compare_ternary_operation_one_output<long double>(
Operation, const TernaryInput<long double> &, long double, double,
RoundingMode);
} // namespace internal
template <typename T> bool round_to_long(T x, long &result) {
MPFRNumber mpfr(x);
return mpfr.round_to_long(result);
}
template bool round_to_long<float>(float, long &);
template bool round_to_long<double>(double, long &);
template bool round_to_long<long double>(long double, long &);
template <typename T> bool round_to_long(T x, RoundingMode mode, long &result) {
MPFRNumber mpfr(x);
return mpfr.round_to_long(get_mpfr_rounding_mode(mode), result);
}
template bool round_to_long<float>(float, RoundingMode, long &);
template bool round_to_long<double>(double, RoundingMode, long &);
template bool round_to_long<long double>(long double, RoundingMode, long &);
template <typename T> T round(T x, RoundingMode mode) {
MPFRNumber mpfr(x);
MPFRNumber result = mpfr.rint(get_mpfr_rounding_mode(mode));
return result.as<T>();
}
template float round<float>(float, RoundingMode);
template double round<double>(double, RoundingMode);
template long double round<long double>(long double, RoundingMode);
} // namespace mpfr
} // namespace testing
} // namespace __llvm_libc