This was stored in LiveIntervals, but not actually used for anything related to LiveIntervals. It was only used in one check for if a load instruction is rematerializable. I also don't think this was entirely correct, since it was implicitly assuming constant loads are also dereferenceable. Remove this and rely only on the invariant+dereferenceable flags in the memory operand. Set the flag based on the AA query upfront. This should have the same net benefit, but has the possible disadvantage of making this AA query nonlazy. Preserve the behavior of assuming pointsToConstantMemory implying dereferenceable for now, but maybe this should be changed.
999 lines
36 KiB
C++
999 lines
36 KiB
C++
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This contains a MachineSchedStrategy implementation for maximizing wave
|
|
/// occupancy on GCN hardware.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GCNSchedStrategy.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
|
|
#define DEBUG_TYPE "machine-scheduler"
|
|
|
|
using namespace llvm;
|
|
|
|
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
|
|
const MachineSchedContext *C) :
|
|
GenericScheduler(C), TargetOccupancy(0), HasClusteredNodes(false),
|
|
HasExcessPressure(false), MF(nullptr) { }
|
|
|
|
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
|
|
GenericScheduler::initialize(DAG);
|
|
|
|
MF = &DAG->MF;
|
|
|
|
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
|
|
|
|
// FIXME: This is also necessary, because some passes that run after
|
|
// scheduling and before regalloc increase register pressure.
|
|
const unsigned ErrorMargin = 3;
|
|
|
|
SGPRExcessLimit =
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
|
|
VGPRExcessLimit =
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
|
|
|
|
SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
|
|
// Set the initial TargetOccupnacy to the maximum occupancy that we can
|
|
// achieve for this function. This effectively sets a lower bound on the
|
|
// 'Critical' register limits in the scheduler.
|
|
TargetOccupancy = MFI.getOccupancy();
|
|
SGPRCriticalLimit =
|
|
std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);
|
|
VGPRCriticalLimit =
|
|
std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit);
|
|
|
|
// Subtract error margin from register limits and avoid overflow.
|
|
SGPRCriticalLimit =
|
|
std::min(SGPRCriticalLimit - ErrorMargin, SGPRCriticalLimit);
|
|
VGPRCriticalLimit =
|
|
std::min(VGPRCriticalLimit - ErrorMargin, VGPRCriticalLimit);
|
|
SGPRExcessLimit = std::min(SGPRExcessLimit - ErrorMargin, SGPRExcessLimit);
|
|
VGPRExcessLimit = std::min(VGPRExcessLimit - ErrorMargin, VGPRExcessLimit);
|
|
}
|
|
|
|
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
|
|
bool AtTop, const RegPressureTracker &RPTracker,
|
|
const SIRegisterInfo *SRI,
|
|
unsigned SGPRPressure,
|
|
unsigned VGPRPressure) {
|
|
|
|
Cand.SU = SU;
|
|
Cand.AtTop = AtTop;
|
|
|
|
// getDownwardPressure() and getUpwardPressure() make temporary changes to
|
|
// the tracker, so we need to pass those function a non-const copy.
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
Pressure.clear();
|
|
MaxPressure.clear();
|
|
|
|
if (AtTop)
|
|
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
else {
|
|
// FIXME: I think for bottom up scheduling, the register pressure is cached
|
|
// and can be retrieved by DAG->getPressureDif(SU).
|
|
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
}
|
|
|
|
unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
|
|
unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
|
|
|
|
// If two instructions increase the pressure of different register sets
|
|
// by the same amount, the generic scheduler will prefer to schedule the
|
|
// instruction that increases the set with the least amount of registers,
|
|
// which in our case would be SGPRs. This is rarely what we want, so
|
|
// when we report excess/critical register pressure, we do it either
|
|
// only for VGPRs or only for SGPRs.
|
|
|
|
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
|
|
const unsigned MaxVGPRPressureInc = 16;
|
|
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
|
|
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
|
|
|
|
|
|
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
|
|
// to increase the likelihood we don't go over the limits. We should improve
|
|
// the analysis to look through dependencies to find the path with the least
|
|
// register pressure.
|
|
|
|
// We only need to update the RPDelta for instructions that increase register
|
|
// pressure. Instructions that decrease or keep reg pressure the same will be
|
|
// marked as RegExcess in tryCandidate() when they are compared with
|
|
// instructions that increase the register pressure.
|
|
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
|
|
HasExcessPressure = true;
|
|
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
|
|
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
|
|
}
|
|
|
|
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
|
|
HasExcessPressure = true;
|
|
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
|
|
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
|
|
}
|
|
|
|
// Register pressure is considered 'CRITICAL' if it is approaching a value
|
|
// that would reduce the wave occupancy for the execution unit. When
|
|
// register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
|
|
// has the same cost, so we don't need to prefer one over the other.
|
|
|
|
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
|
|
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
|
|
|
|
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
|
|
HasExcessPressure = true;
|
|
if (SGPRDelta > VGPRDelta) {
|
|
Cand.RPDelta.CriticalMax =
|
|
PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
|
|
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
|
|
} else {
|
|
Cand.RPDelta.CriticalMax =
|
|
PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
|
|
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeFromQueue()
|
|
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
|
|
const CandPolicy &ZonePolicy,
|
|
const RegPressureTracker &RPTracker,
|
|
SchedCandidate &Cand) {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
|
|
unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
|
|
unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
|
|
ReadyQueue &Q = Zone.Available;
|
|
for (SUnit *SU : Q) {
|
|
|
|
SchedCandidate TryCand(ZonePolicy);
|
|
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
|
|
SGPRPressure, VGPRPressure);
|
|
// Pass SchedBoundary only when comparing nodes from the same boundary.
|
|
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
|
|
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
|
|
if (TryCand.Reason != NoCand) {
|
|
// Initialize resource delta if needed in case future heuristics query it.
|
|
if (TryCand.ResDelta == SchedResourceDelta())
|
|
TryCand.initResourceDelta(Zone.DAG, SchedModel);
|
|
Cand.setBest(TryCand);
|
|
LLVM_DEBUG(traceCandidate(Cand));
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeBidirectional()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
IsTopNode = false;
|
|
return SU;
|
|
}
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
IsTopNode = true;
|
|
return SU;
|
|
}
|
|
// Set the bottom-up policy based on the state of the current bottom zone and
|
|
// the instructions outside the zone, including the top zone.
|
|
CandPolicy BotPolicy;
|
|
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
|
|
// Set the top-down policy based on the state of the current top zone and
|
|
// the instructions outside the zone, including the bottom zone.
|
|
CandPolicy TopPolicy;
|
|
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
|
|
|
|
// See if BotCand is still valid (because we previously scheduled from Top).
|
|
LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
|
|
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
|
|
BotCand.Policy != BotPolicy) {
|
|
BotCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
LLVM_DEBUG(traceCandidate(BotCand));
|
|
#ifndef NDEBUG
|
|
if (VerifyScheduling) {
|
|
SchedCandidate TCand;
|
|
TCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
|
|
assert(TCand.SU == BotCand.SU &&
|
|
"Last pick result should correspond to re-picking right now");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Check if the top Q has a better candidate.
|
|
LLVM_DEBUG(dbgs() << "Picking from Top:\n");
|
|
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
|
|
TopCand.Policy != TopPolicy) {
|
|
TopCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
LLVM_DEBUG(traceCandidate(TopCand));
|
|
#ifndef NDEBUG
|
|
if (VerifyScheduling) {
|
|
SchedCandidate TCand;
|
|
TCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
|
|
assert(TCand.SU == TopCand.SU &&
|
|
"Last pick result should correspond to re-picking right now");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Pick best from BotCand and TopCand.
|
|
LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
|
|
dbgs() << "Bot Cand: "; traceCandidate(BotCand););
|
|
SchedCandidate Cand = BotCand;
|
|
TopCand.Reason = NoCand;
|
|
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
|
|
if (TopCand.Reason != NoCand) {
|
|
Cand.setBest(TopCand);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
|
|
|
|
IsTopNode = Cand.AtTop;
|
|
return Cand.SU;
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNode()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
|
|
if (DAG->top() == DAG->bottom()) {
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
return nullptr;
|
|
}
|
|
SUnit *SU;
|
|
do {
|
|
if (RegionPolicy.OnlyTopDown) {
|
|
SU = Top.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
TopCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = TopCand.SU;
|
|
}
|
|
IsTopNode = true;
|
|
} else if (RegionPolicy.OnlyBottomUp) {
|
|
SU = Bot.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
BotCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = BotCand.SU;
|
|
}
|
|
IsTopNode = false;
|
|
} else {
|
|
SU = pickNodeBidirectional(IsTopNode);
|
|
}
|
|
} while (SU->isScheduled);
|
|
|
|
if (SU->isTopReady())
|
|
Top.removeReady(SU);
|
|
if (SU->isBottomReady())
|
|
Bot.removeReady(SU);
|
|
|
|
if (!HasClusteredNodes && SU->getInstr()->mayLoadOrStore()) {
|
|
for (SDep &Dep : SU->Preds) {
|
|
if (Dep.isCluster()) {
|
|
HasClusteredNodes = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
|
|
<< *SU->getInstr());
|
|
return SU;
|
|
}
|
|
|
|
GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
|
|
std::unique_ptr<MachineSchedStrategy> S) :
|
|
ScheduleDAGMILive(C, std::move(S)),
|
|
ST(MF.getSubtarget<GCNSubtarget>()),
|
|
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
|
|
StartingOccupancy(MFI.getOccupancy()),
|
|
MinOccupancy(StartingOccupancy), Stage(Collect), RegionIdx(0) {
|
|
|
|
LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::schedule() {
|
|
if (Stage == Collect) {
|
|
// Just record regions at the first pass.
|
|
Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
|
|
return;
|
|
}
|
|
|
|
std::vector<MachineInstr*> Unsched;
|
|
Unsched.reserve(NumRegionInstrs);
|
|
for (auto &I : *this) {
|
|
Unsched.push_back(&I);
|
|
}
|
|
|
|
GCNRegPressure PressureBefore;
|
|
if (LIS) {
|
|
PressureBefore = Pressure[RegionIdx];
|
|
|
|
LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
|
|
GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
|
|
dbgs() << "Region live-in pressure: ";
|
|
llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
|
|
dbgs() << "Region register pressure: ";
|
|
PressureBefore.print(dbgs()));
|
|
}
|
|
|
|
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
|
|
// Set HasClusteredNodes to true for late stages where we have already
|
|
// collected it. That way pickNode() will not scan SDep's when not needed.
|
|
S.HasClusteredNodes = Stage > InitialSchedule;
|
|
S.HasExcessPressure = false;
|
|
ScheduleDAGMILive::schedule();
|
|
Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
|
|
RescheduleRegions[RegionIdx] = false;
|
|
if (Stage == InitialSchedule && S.HasClusteredNodes)
|
|
RegionsWithClusters[RegionIdx] = true;
|
|
if (S.HasExcessPressure)
|
|
RegionsWithHighRP[RegionIdx] = true;
|
|
|
|
if (!LIS)
|
|
return;
|
|
|
|
// Check the results of scheduling.
|
|
auto PressureAfter = getRealRegPressure();
|
|
|
|
LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
|
|
PressureAfter.print(dbgs()));
|
|
|
|
if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
|
|
PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
|
|
Pressure[RegionIdx] = PressureAfter;
|
|
RegionsWithMinOcc[RegionIdx] =
|
|
PressureAfter.getOccupancy(ST) == MinOccupancy;
|
|
|
|
LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
|
|
return;
|
|
}
|
|
|
|
unsigned WavesAfter =
|
|
std::min(S.TargetOccupancy, PressureAfter.getOccupancy(ST));
|
|
unsigned WavesBefore =
|
|
std::min(S.TargetOccupancy, PressureBefore.getOccupancy(ST));
|
|
LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
|
|
<< ", after " << WavesAfter << ".\n");
|
|
|
|
// We may not be able to keep the current target occupancy because of the just
|
|
// scheduled region. We might still be able to revert scheduling if the
|
|
// occupancy before was higher, or if the current schedule has register
|
|
// pressure higher than the excess limits which could lead to more spilling.
|
|
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
|
|
|
|
// Allow memory bound functions to drop to 4 waves if not limited by an
|
|
// attribute.
|
|
if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
|
|
WavesAfter >= MFI.getMinAllowedOccupancy()) {
|
|
LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
|
|
<< MFI.getMinAllowedOccupancy() << " waves\n");
|
|
NewOccupancy = WavesAfter;
|
|
}
|
|
|
|
if (NewOccupancy < MinOccupancy) {
|
|
MinOccupancy = NewOccupancy;
|
|
MFI.limitOccupancy(MinOccupancy);
|
|
RegionsWithMinOcc.reset();
|
|
LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
|
|
<< MinOccupancy << ".\n");
|
|
}
|
|
|
|
unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
|
|
unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
|
|
if (PressureAfter.getVGPRNum(false) > MaxVGPRs ||
|
|
PressureAfter.getAGPRNum() > MaxVGPRs ||
|
|
PressureAfter.getSGPRNum() > MaxSGPRs) {
|
|
RescheduleRegions[RegionIdx] = true;
|
|
RegionsWithHighRP[RegionIdx] = true;
|
|
}
|
|
|
|
// If this condition is true, then either the occupancy before and after
|
|
// scheduling is the same, or we are allowing the occupancy to drop because
|
|
// the function is memory bound. Even if we are OK with the current occupancy,
|
|
// we still need to verify that we will not introduce any extra chance of
|
|
// spilling.
|
|
if (WavesAfter >= MinOccupancy) {
|
|
if (Stage == UnclusteredReschedule &&
|
|
!PressureAfter.less(ST, PressureBefore)) {
|
|
LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
|
|
} else if (WavesAfter > MFI.getMinWavesPerEU() ||
|
|
PressureAfter.less(ST, PressureBefore) ||
|
|
!RescheduleRegions[RegionIdx]) {
|
|
Pressure[RegionIdx] = PressureAfter;
|
|
RegionsWithMinOcc[RegionIdx] =
|
|
PressureAfter.getOccupancy(ST) == MinOccupancy;
|
|
if (!RegionsWithClusters[RegionIdx] &&
|
|
(Stage + 1) == UnclusteredReschedule)
|
|
RescheduleRegions[RegionIdx] = false;
|
|
return;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
|
|
}
|
|
}
|
|
|
|
RegionsWithMinOcc[RegionIdx] =
|
|
PressureBefore.getOccupancy(ST) == MinOccupancy;
|
|
LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
|
|
RescheduleRegions[RegionIdx] = RegionsWithClusters[RegionIdx] ||
|
|
(Stage + 1) != UnclusteredReschedule;
|
|
RegionEnd = RegionBegin;
|
|
int SkippedDebugInstr = 0;
|
|
for (MachineInstr *MI : Unsched) {
|
|
if (MI->isDebugInstr()) {
|
|
++SkippedDebugInstr;
|
|
continue;
|
|
}
|
|
|
|
if (MI->getIterator() != RegionEnd) {
|
|
BB->remove(MI);
|
|
BB->insert(RegionEnd, MI);
|
|
if (!MI->isDebugInstr())
|
|
LIS->handleMove(*MI, true);
|
|
}
|
|
// Reset read-undef flags and update them later.
|
|
for (auto &Op : MI->operands())
|
|
if (Op.isReg() && Op.isDef())
|
|
Op.setIsUndef(false);
|
|
RegisterOperands RegOpers;
|
|
RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
|
|
if (!MI->isDebugInstr()) {
|
|
if (ShouldTrackLaneMasks) {
|
|
// Adjust liveness and add missing dead+read-undef flags.
|
|
SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
|
|
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
|
|
} else {
|
|
// Adjust for missing dead-def flags.
|
|
RegOpers.detectDeadDefs(*MI, *LIS);
|
|
}
|
|
}
|
|
RegionEnd = MI->getIterator();
|
|
++RegionEnd;
|
|
LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
|
|
}
|
|
|
|
// After reverting schedule, debug instrs will now be at the end of the block
|
|
// and RegionEnd will point to the first debug instr. Increment RegionEnd
|
|
// pass debug instrs to the actual end of the scheduling region.
|
|
while (SkippedDebugInstr-- > 0)
|
|
++RegionEnd;
|
|
|
|
// If Unsched.front() instruction is a debug instruction, this will actually
|
|
// shrink the region since we moved all debug instructions to the end of the
|
|
// block. Find the first instruction that is not a debug instruction.
|
|
RegionBegin = Unsched.front()->getIterator();
|
|
if (RegionBegin->isDebugInstr()) {
|
|
for (MachineInstr *MI : Unsched) {
|
|
if (MI->isDebugInstr())
|
|
continue;
|
|
RegionBegin = MI->getIterator();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Then move the debug instructions back into their correct place and set
|
|
// RegionBegin and RegionEnd if needed.
|
|
placeDebugValues();
|
|
|
|
Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
|
|
}
|
|
|
|
GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
|
|
GCNDownwardRPTracker RPTracker(*LIS);
|
|
RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
|
|
return RPTracker.moveMaxPressure();
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
|
|
GCNDownwardRPTracker RPTracker(*LIS);
|
|
|
|
// If the block has the only successor then live-ins of that successor are
|
|
// live-outs of the current block. We can reuse calculated live set if the
|
|
// successor will be sent to scheduling past current block.
|
|
const MachineBasicBlock *OnlySucc = nullptr;
|
|
if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
|
|
SlotIndexes *Ind = LIS->getSlotIndexes();
|
|
if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
|
|
OnlySucc = *MBB->succ_begin();
|
|
}
|
|
|
|
// Scheduler sends regions from the end of the block upwards.
|
|
size_t CurRegion = RegionIdx;
|
|
for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
|
|
if (Regions[CurRegion].first->getParent() != MBB)
|
|
break;
|
|
--CurRegion;
|
|
|
|
auto I = MBB->begin();
|
|
auto LiveInIt = MBBLiveIns.find(MBB);
|
|
auto &Rgn = Regions[CurRegion];
|
|
auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
|
|
if (LiveInIt != MBBLiveIns.end()) {
|
|
auto LiveIn = std::move(LiveInIt->second);
|
|
RPTracker.reset(*MBB->begin(), &LiveIn);
|
|
MBBLiveIns.erase(LiveInIt);
|
|
} else {
|
|
I = Rgn.first;
|
|
auto LRS = BBLiveInMap.lookup(NonDbgMI);
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
|
|
#endif
|
|
RPTracker.reset(*I, &LRS);
|
|
}
|
|
|
|
for ( ; ; ) {
|
|
I = RPTracker.getNext();
|
|
|
|
if (Regions[CurRegion].first == I || NonDbgMI == I) {
|
|
LiveIns[CurRegion] = RPTracker.getLiveRegs();
|
|
RPTracker.clearMaxPressure();
|
|
}
|
|
|
|
if (Regions[CurRegion].second == I) {
|
|
Pressure[CurRegion] = RPTracker.moveMaxPressure();
|
|
if (CurRegion-- == RegionIdx)
|
|
break;
|
|
}
|
|
RPTracker.advanceToNext();
|
|
RPTracker.advanceBeforeNext();
|
|
}
|
|
|
|
if (OnlySucc) {
|
|
if (I != MBB->end()) {
|
|
RPTracker.advanceToNext();
|
|
RPTracker.advance(MBB->end());
|
|
}
|
|
RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
|
|
RPTracker.advanceBeforeNext();
|
|
MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
|
|
}
|
|
}
|
|
|
|
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
|
|
GCNScheduleDAGMILive::getBBLiveInMap() const {
|
|
assert(!Regions.empty());
|
|
std::vector<MachineInstr *> BBStarters;
|
|
BBStarters.reserve(Regions.size());
|
|
auto I = Regions.rbegin(), E = Regions.rend();
|
|
auto *BB = I->first->getParent();
|
|
do {
|
|
auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
|
|
BBStarters.push_back(MI);
|
|
do {
|
|
++I;
|
|
} while (I != E && I->first->getParent() == BB);
|
|
} while (I != E);
|
|
return getLiveRegMap(BBStarters, false /*After*/, *LIS);
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::finalizeSchedule() {
|
|
LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
|
|
|
|
LiveIns.resize(Regions.size());
|
|
Pressure.resize(Regions.size());
|
|
RescheduleRegions.resize(Regions.size());
|
|
RegionsWithClusters.resize(Regions.size());
|
|
RegionsWithHighRP.resize(Regions.size());
|
|
RegionsWithMinOcc.resize(Regions.size());
|
|
RescheduleRegions.set();
|
|
RegionsWithClusters.reset();
|
|
RegionsWithHighRP.reset();
|
|
RegionsWithMinOcc.reset();
|
|
|
|
if (!Regions.empty())
|
|
BBLiveInMap = getBBLiveInMap();
|
|
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations;
|
|
|
|
do {
|
|
Stage++;
|
|
RegionIdx = 0;
|
|
MachineBasicBlock *MBB = nullptr;
|
|
|
|
if (Stage > InitialSchedule) {
|
|
if (!LIS)
|
|
break;
|
|
|
|
// Retry function scheduling if we found resulting occupancy and it is
|
|
// lower than used for first pass scheduling. This will give more freedom
|
|
// to schedule low register pressure blocks.
|
|
// Code is partially copied from MachineSchedulerBase::scheduleRegions().
|
|
|
|
if (Stage == UnclusteredReschedule) {
|
|
if (RescheduleRegions.none())
|
|
continue;
|
|
LLVM_DEBUG(dbgs() <<
|
|
"Retrying function scheduling without clustering.\n");
|
|
}
|
|
|
|
if (Stage == ClusteredLowOccupancyReschedule) {
|
|
if (StartingOccupancy <= MinOccupancy)
|
|
break;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Retrying function scheduling with lowest recorded occupancy "
|
|
<< MinOccupancy << ".\n");
|
|
}
|
|
|
|
if (Stage == PreRARematerialize) {
|
|
if (RegionsWithMinOcc.none() || Regions.size() == 1)
|
|
break;
|
|
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
// Check maximum occupancy
|
|
if (ST.computeOccupancy(MF.getFunction(), MFI.getLDSSize()) ==
|
|
MinOccupancy)
|
|
break;
|
|
|
|
// FIXME: This pass will invalidate cached MBBLiveIns for regions
|
|
// inbetween the defs and region we sinked the def to. Cached pressure
|
|
// for regions where a def is sinked from will also be invalidated. Will
|
|
// need to be fixed if there is another pass after this pass.
|
|
static_assert(LastStage == PreRARematerialize,
|
|
"Passes after PreRARematerialize are not supported");
|
|
|
|
collectRematerializableInstructions();
|
|
if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII))
|
|
break;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Retrying function scheduling with improved occupancy of "
|
|
<< MinOccupancy << " from rematerializing\n");
|
|
}
|
|
}
|
|
|
|
if (Stage == UnclusteredReschedule)
|
|
SavedMutations.swap(Mutations);
|
|
|
|
for (auto Region : Regions) {
|
|
if (((Stage == UnclusteredReschedule || Stage == PreRARematerialize) &&
|
|
!RescheduleRegions[RegionIdx]) ||
|
|
(Stage == ClusteredLowOccupancyReschedule &&
|
|
!RegionsWithClusters[RegionIdx] && !RegionsWithHighRP[RegionIdx])) {
|
|
|
|
++RegionIdx;
|
|
continue;
|
|
}
|
|
|
|
RegionBegin = Region.first;
|
|
RegionEnd = Region.second;
|
|
|
|
if (RegionBegin->getParent() != MBB) {
|
|
if (MBB) finishBlock();
|
|
MBB = RegionBegin->getParent();
|
|
startBlock(MBB);
|
|
if (Stage == InitialSchedule)
|
|
computeBlockPressure(MBB);
|
|
}
|
|
|
|
unsigned NumRegionInstrs = std::distance(begin(), end());
|
|
enterRegion(MBB, begin(), end(), NumRegionInstrs);
|
|
|
|
// Skip empty scheduling regions (0 or 1 schedulable instructions).
|
|
if (begin() == end() || begin() == std::prev(end())) {
|
|
exitRegion();
|
|
++RegionIdx;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
|
|
LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
|
|
<< MBB->getName() << "\n From: " << *begin()
|
|
<< " To: ";
|
|
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
|
|
else dbgs() << "End";
|
|
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
|
|
|
|
schedule();
|
|
|
|
exitRegion();
|
|
++RegionIdx;
|
|
}
|
|
finishBlock();
|
|
|
|
if (Stage == UnclusteredReschedule)
|
|
SavedMutations.swap(Mutations);
|
|
} while (Stage != LastStage);
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::collectRematerializableInstructions() {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(TRI);
|
|
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
|
|
Register Reg = Register::index2VirtReg(I);
|
|
if (!LIS->hasInterval(Reg))
|
|
continue;
|
|
|
|
// TODO: Handle AGPR and SGPR rematerialization
|
|
if (!SRI->isVGPRClass(MRI.getRegClass(Reg)) || !MRI.hasOneDef(Reg) ||
|
|
!MRI.hasOneNonDBGUse(Reg))
|
|
continue;
|
|
|
|
MachineOperand *Op = MRI.getOneDef(Reg);
|
|
MachineInstr *Def = Op->getParent();
|
|
if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def))
|
|
continue;
|
|
|
|
MachineInstr *UseI = &*MRI.use_instr_nodbg_begin(Reg);
|
|
if (Def->getParent() == UseI->getParent())
|
|
continue;
|
|
|
|
// We are only collecting defs that are defined in another block and are
|
|
// live-through or used inside regions at MinOccupancy. This means that the
|
|
// register must be in the live-in set for the region.
|
|
bool AddedToRematList = false;
|
|
for (unsigned I = 0, E = Regions.size(); I != E; ++I) {
|
|
auto It = LiveIns[I].find(Reg);
|
|
if (It != LiveIns[I].end() && !It->second.none()) {
|
|
if (RegionsWithMinOcc[I]) {
|
|
RematerializableInsts[I][Def] = UseI;
|
|
AddedToRematList = true;
|
|
}
|
|
|
|
// Collect regions with rematerializable reg as live-in to avoid
|
|
// searching later when updating RP.
|
|
RematDefToLiveInRegions[Def].push_back(I);
|
|
}
|
|
}
|
|
if (!AddedToRematList)
|
|
RematDefToLiveInRegions.erase(Def);
|
|
}
|
|
}
|
|
|
|
bool GCNScheduleDAGMILive::sinkTriviallyRematInsts(const GCNSubtarget &ST,
|
|
const TargetInstrInfo *TII) {
|
|
// Temporary copies of cached variables we will be modifying and replacing if
|
|
// sinking succeeds.
|
|
SmallVector<
|
|
std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>, 32>
|
|
NewRegions;
|
|
DenseMap<unsigned, GCNRPTracker::LiveRegSet> NewLiveIns;
|
|
DenseMap<unsigned, GCNRegPressure> NewPressure;
|
|
BitVector NewRescheduleRegions;
|
|
|
|
NewRegions.resize(Regions.size());
|
|
NewRescheduleRegions.resize(Regions.size());
|
|
|
|
// Collect only regions that has a rematerializable def as a live-in.
|
|
SmallSet<unsigned, 16> ImpactedRegions;
|
|
for (const auto &It : RematDefToLiveInRegions)
|
|
ImpactedRegions.insert(It.second.begin(), It.second.end());
|
|
|
|
// Make copies of register pressure and live-ins cache that will be updated
|
|
// as we rematerialize.
|
|
for (auto Idx : ImpactedRegions) {
|
|
NewPressure[Idx] = Pressure[Idx];
|
|
NewLiveIns[Idx] = LiveIns[Idx];
|
|
}
|
|
NewRegions = Regions;
|
|
NewRescheduleRegions.reset();
|
|
|
|
DenseMap<MachineInstr *, MachineInstr *> InsertedMIToOldDef;
|
|
bool Improved = false;
|
|
for (auto I : ImpactedRegions) {
|
|
if (!RegionsWithMinOcc[I])
|
|
continue;
|
|
|
|
Improved = false;
|
|
int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts());
|
|
int SGPRUsage = NewPressure[I].getSGPRNum();
|
|
|
|
// TODO: Handle occupancy drop due to AGPR and SGPR.
|
|
// Check if cause of occupancy drop is due to VGPR usage and not SGPR.
|
|
if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == MinOccupancy)
|
|
break;
|
|
|
|
// The occupancy of this region could have been improved by a previous
|
|
// iteration's sinking of defs.
|
|
if (NewPressure[I].getOccupancy(ST) > MinOccupancy) {
|
|
NewRescheduleRegions[I] = true;
|
|
Improved = true;
|
|
continue;
|
|
}
|
|
|
|
// First check if we have enough trivially rematerializable instructions to
|
|
// improve occupancy. Optimistically assume all instructions we are able to
|
|
// sink decreased RP.
|
|
int TotalSinkableRegs = 0;
|
|
for (const auto &It : RematerializableInsts[I]) {
|
|
MachineInstr *Def = It.first;
|
|
Register DefReg = Def->getOperand(0).getReg();
|
|
TotalSinkableRegs +=
|
|
SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]);
|
|
}
|
|
int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs;
|
|
unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink);
|
|
// If in the most optimistic scenario, we cannot improve occupancy, then do
|
|
// not attempt to sink any instructions.
|
|
if (OptimisticOccupancy <= MinOccupancy)
|
|
break;
|
|
|
|
unsigned ImproveOccupancy = 0;
|
|
SmallVector<MachineInstr *, 4> SinkedDefs;
|
|
for (auto &It : RematerializableInsts[I]) {
|
|
MachineInstr *Def = It.first;
|
|
MachineBasicBlock::iterator InsertPos =
|
|
MachineBasicBlock::iterator(It.second);
|
|
Register Reg = Def->getOperand(0).getReg();
|
|
// Rematerialize MI to its use block. Since we are only rematerializing
|
|
// instructions that do not have any virtual reg uses, we do not need to
|
|
// call LiveRangeEdit::allUsesAvailableAt() and
|
|
// LiveRangeEdit::canRematerializeAt().
|
|
TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
|
|
Def->getOperand(0).getSubReg(), *Def, *TRI);
|
|
MachineInstr *NewMI = &*(--InsertPos);
|
|
LIS->InsertMachineInstrInMaps(*NewMI);
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
InsertedMIToOldDef[NewMI] = Def;
|
|
|
|
// Update region boundaries in scheduling region we sinked from since we
|
|
// may sink an instruction that was at the beginning or end of its region
|
|
updateRegionBoundaries(NewRegions, Def, /*NewMI =*/nullptr,
|
|
/*Removing =*/true);
|
|
|
|
// Update region boundaries in region we sinked to.
|
|
updateRegionBoundaries(NewRegions, InsertPos, NewMI);
|
|
|
|
LaneBitmask PrevMask = NewLiveIns[I][Reg];
|
|
// FIXME: Also update cached pressure for where the def was sinked from.
|
|
// Update RP for all regions that has this reg as a live-in and remove
|
|
// the reg from all regions as a live-in.
|
|
for (auto Idx : RematDefToLiveInRegions[Def]) {
|
|
NewLiveIns[Idx].erase(Reg);
|
|
if (InsertPos->getParent() != Regions[Idx].first->getParent()) {
|
|
// Def is live-through and not used in this block.
|
|
NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), MRI);
|
|
} else {
|
|
// Def is used and rematerialized into this block.
|
|
GCNDownwardRPTracker RPT(*LIS);
|
|
auto *NonDbgMI = &*skipDebugInstructionsForward(
|
|
NewRegions[Idx].first, NewRegions[Idx].second);
|
|
RPT.reset(*NonDbgMI, &NewLiveIns[Idx]);
|
|
RPT.advance(NewRegions[Idx].second);
|
|
NewPressure[Idx] = RPT.moveMaxPressure();
|
|
}
|
|
}
|
|
|
|
SinkedDefs.push_back(Def);
|
|
ImproveOccupancy = NewPressure[I].getOccupancy(ST);
|
|
if (ImproveOccupancy > MinOccupancy)
|
|
break;
|
|
}
|
|
|
|
// Remove defs we just sinked from all regions' list of sinkable defs
|
|
for (auto &Def : SinkedDefs)
|
|
for (auto TrackedIdx : RematDefToLiveInRegions[Def])
|
|
RematerializableInsts[TrackedIdx].erase(Def);
|
|
|
|
if (ImproveOccupancy <= MinOccupancy)
|
|
break;
|
|
|
|
NewRescheduleRegions[I] = true;
|
|
Improved = true;
|
|
}
|
|
|
|
if (!Improved) {
|
|
// Occupancy was not improved for all regions that were at MinOccupancy.
|
|
// Undo sinking and remove newly rematerialized instructions.
|
|
for (auto &Entry : InsertedMIToOldDef) {
|
|
MachineInstr *MI = Entry.first;
|
|
MachineInstr *OldMI = Entry.second;
|
|
Register Reg = MI->getOperand(0).getReg();
|
|
LIS->RemoveMachineInstrFromMaps(*MI);
|
|
MI->eraseFromParent();
|
|
OldMI->clearRegisterDeads(Reg);
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Occupancy was improved for all regions.
|
|
for (auto &Entry : InsertedMIToOldDef) {
|
|
MachineInstr *MI = Entry.first;
|
|
MachineInstr *OldMI = Entry.second;
|
|
|
|
// Remove OldMI from BBLiveInMap since we are sinking it from its MBB.
|
|
BBLiveInMap.erase(OldMI);
|
|
|
|
// Remove OldMI and update LIS
|
|
Register Reg = MI->getOperand(0).getReg();
|
|
LIS->RemoveMachineInstrFromMaps(*OldMI);
|
|
OldMI->eraseFromParent();
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
|
|
// Update live-ins, register pressure, and regions caches.
|
|
for (auto Idx : ImpactedRegions) {
|
|
LiveIns[Idx] = NewLiveIns[Idx];
|
|
Pressure[Idx] = NewPressure[Idx];
|
|
MBBLiveIns.erase(Regions[Idx].first->getParent());
|
|
}
|
|
Regions = NewRegions;
|
|
RescheduleRegions = NewRescheduleRegions;
|
|
|
|
SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
MFI.increaseOccupancy(MF, ++MinOccupancy);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Copied from MachineLICM
|
|
bool GCNScheduleDAGMILive::isTriviallyReMaterializable(const MachineInstr &MI) {
|
|
if (!TII->isTriviallyReMaterializable(MI))
|
|
return false;
|
|
|
|
for (const MachineOperand &MO : MI.operands())
|
|
if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// When removing, we will have to check both beginning and ending of the region.
|
|
// When inserting, we will only have to check if we are inserting NewMI in front
|
|
// of a scheduling region and do not need to check the ending since we will only
|
|
// ever be inserting before an already existing MI.
|
|
void GCNScheduleDAGMILive::updateRegionBoundaries(
|
|
SmallVectorImpl<std::pair<MachineBasicBlock::iterator,
|
|
MachineBasicBlock::iterator>> &RegionBoundaries,
|
|
MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) {
|
|
unsigned I = 0, E = RegionBoundaries.size();
|
|
// Search for first region of the block where MI is located
|
|
while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent())
|
|
++I;
|
|
|
|
for (; I != E; ++I) {
|
|
if (MI->getParent() != RegionBoundaries[I].first->getParent())
|
|
return;
|
|
|
|
if (Removing && MI == RegionBoundaries[I].first &&
|
|
MI == RegionBoundaries[I].second) {
|
|
// MI is in a region with size 1, after removing, the region will be
|
|
// size 0, set RegionBegin and RegionEnd to pass end of block iterator.
|
|
RegionBoundaries[I] =
|
|
std::make_pair(MI->getParent()->end(), MI->getParent()->end());
|
|
return;
|
|
}
|
|
if (MI == RegionBoundaries[I].first) {
|
|
if (Removing)
|
|
RegionBoundaries[I] =
|
|
std::make_pair(std::next(MI), RegionBoundaries[I].second);
|
|
else
|
|
// Inserted NewMI in front of region, set new RegionBegin to NewMI
|
|
RegionBoundaries[I] = std::make_pair(MachineBasicBlock::iterator(NewMI),
|
|
RegionBoundaries[I].second);
|
|
return;
|
|
}
|
|
if (Removing && MI == RegionBoundaries[I].second) {
|
|
RegionBoundaries[I] =
|
|
std::make_pair(RegionBoundaries[I].first, std::prev(MI));
|
|
return;
|
|
}
|
|
}
|
|
}
|