Files
clang-p2996/llvm/lib/Target/RISCV/RISCVTargetMachine.cpp
Craig Topper 8cc483099a [RISCV] Teach RISCVCodeGenPrepare to optimize (i64 (and (zext/sext (i32 X), C1)))
If X is known positive by a dominating condition, we can fill in
ones into the upper bits of C1 if that would allow it to become an
simm12 allowing the use of ANDI.

This pattern often occurs in unrolled loops where the induction
variable has been widened.

To get the best benefit from this, I had to move the pass above
ConstantHoisting which is in addIRPasses. Otherwise the AND constant
is often hoisted away from the AND.

Reviewed By: asb

Differential Revision: https://reviews.llvm.org/D129888
2022-07-17 11:00:56 -07:00

288 lines
9.8 KiB
C++

//===-- RISCVTargetMachine.cpp - Define TargetMachine for RISCV -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the info about RISCV target spec.
//
//===----------------------------------------------------------------------===//
#include "RISCVTargetMachine.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVMacroFusion.h"
#include "RISCVTargetObjectFile.h"
#include "RISCVTargetTransformInfo.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO.h"
using namespace llvm;
static cl::opt<bool> EnableRedundantCopyElimination(
"riscv-enable-copyelim",
cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVTarget() {
RegisterTargetMachine<RISCVTargetMachine> X(getTheRISCV32Target());
RegisterTargetMachine<RISCVTargetMachine> Y(getTheRISCV64Target());
auto *PR = PassRegistry::getPassRegistry();
initializeGlobalISel(*PR);
initializeRISCVMakeCompressibleOptPass(*PR);
initializeRISCVGatherScatterLoweringPass(*PR);
initializeRISCVCodeGenPreparePass(*PR);
initializeRISCVMergeBaseOffsetOptPass(*PR);
initializeRISCVSExtWRemovalPass(*PR);
initializeRISCVExpandPseudoPass(*PR);
initializeRISCVInsertVSETVLIPass(*PR);
}
static StringRef computeDataLayout(const Triple &TT) {
if (TT.isArch64Bit())
return "e-m:e-p:64:64-i64:64-i128:128-n64-S128";
assert(TT.isArch32Bit() && "only RV32 and RV64 are currently supported");
return "e-m:e-p:32:32-i64:64-n32-S128";
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
Optional<Reloc::Model> RM) {
return RM.value_or(Reloc::Static);
}
RISCVTargetMachine::RISCVTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, RM),
getEffectiveCodeModel(CM, CodeModel::Small), OL),
TLOF(std::make_unique<RISCVELFTargetObjectFile>()) {
initAsmInfo();
// RISC-V supports the MachineOutliner.
setMachineOutliner(true);
setSupportsDefaultOutlining(true);
}
const RISCVSubtarget *
RISCVTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
std::string TuneCPU =
TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
std::string Key = CPU + TuneCPU + FS;
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
auto ABIName = Options.MCOptions.getABIName();
if (const MDString *ModuleTargetABI = dyn_cast_or_null<MDString>(
F.getParent()->getModuleFlag("target-abi"))) {
auto TargetABI = RISCVABI::getTargetABI(ABIName);
if (TargetABI != RISCVABI::ABI_Unknown &&
ModuleTargetABI->getString() != ABIName) {
report_fatal_error("-target-abi option != target-abi module flag");
}
ABIName = ModuleTargetABI->getString();
}
I = std::make_unique<RISCVSubtarget>(TargetTriple, CPU, TuneCPU, FS, ABIName, *this);
}
return I.get();
}
TargetTransformInfo
RISCVTargetMachine::getTargetTransformInfo(const Function &F) const {
return TargetTransformInfo(RISCVTTIImpl(this, F));
}
// A RISC-V hart has a single byte-addressable address space of 2^XLEN bytes
// for all memory accesses, so it is reasonable to assume that an
// implementation has no-op address space casts. If an implementation makes a
// change to this, they can override it here.
bool RISCVTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DstAS) const {
return true;
}
namespace {
class RISCVPassConfig : public TargetPassConfig {
public:
RISCVPassConfig(RISCVTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
RISCVTargetMachine &getRISCVTargetMachine() const {
return getTM<RISCVTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
const RISCVSubtarget &ST = C->MF->getSubtarget<RISCVSubtarget>();
if (ST.hasMacroFusion()) {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createRISCVMacroFusionDAGMutation());
return DAG;
}
return nullptr;
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
const RISCVSubtarget &ST = C->MF->getSubtarget<RISCVSubtarget>();
if (ST.hasMacroFusion()) {
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
DAG->addMutation(createRISCVMacroFusionDAGMutation());
return DAG;
}
return nullptr;
}
void addIRPasses() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addIRTranslator() override;
bool addLegalizeMachineIR() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
void addPreSched2() override;
void addMachineSSAOptimization() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
};
} // namespace
TargetPassConfig *RISCVTargetMachine::createPassConfig(PassManagerBase &PM) {
return new RISCVPassConfig(*this, PM);
}
void RISCVPassConfig::addIRPasses() {
addPass(createAtomicExpandPass());
if (getOptLevel() != CodeGenOpt::None)
addPass(createRISCVGatherScatterLoweringPass());
if (getOptLevel() != CodeGenOpt::None)
addPass(createRISCVCodeGenPreparePass());
TargetPassConfig::addIRPasses();
}
bool RISCVPassConfig::addPreISel() {
if (TM->getOptLevel() != CodeGenOpt::None) {
// Add a barrier before instruction selection so that we will not get
// deleted block address after enabling default outlining. See D99707 for
// more details.
addPass(createBarrierNoopPass());
}
return false;
}
bool RISCVPassConfig::addInstSelector() {
addPass(createRISCVISelDag(getRISCVTargetMachine(), getOptLevel()));
return false;
}
bool RISCVPassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
bool RISCVPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
bool RISCVPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool RISCVPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect(getOptLevel()));
return false;
}
void RISCVPassConfig::addPreSched2() {}
void RISCVPassConfig::addPreEmitPass() {
addPass(&BranchRelaxationPassID);
addPass(createRISCVMakeCompressibleOptPass());
}
void RISCVPassConfig::addPreEmitPass2() {
addPass(createRISCVExpandPseudoPass());
// Schedule the expansion of AMOs at the last possible moment, avoiding the
// possibility for other passes to break the requirements for forward
// progress in the LR/SC block.
addPass(createRISCVExpandAtomicPseudoPass());
}
void RISCVPassConfig::addMachineSSAOptimization() {
TargetPassConfig::addMachineSSAOptimization();
if (TM->getTargetTriple().getArch() == Triple::riscv64)
addPass(createRISCVSExtWRemovalPass());
}
void RISCVPassConfig::addPreRegAlloc() {
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createRISCVMergeBaseOffsetOptPass());
addPass(createRISCVInsertVSETVLIPass());
}
void RISCVPassConfig::addPostRegAlloc() {
if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination)
addPass(createRISCVRedundantCopyEliminationPass());
}
yaml::MachineFunctionInfo *
RISCVTargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::RISCVMachineFunctionInfo();
}
yaml::MachineFunctionInfo *
RISCVTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<RISCVMachineFunctionInfo>();
return new yaml::RISCVMachineFunctionInfo(*MFI);
}
bool RISCVTargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const auto &YamlMFI =
static_cast<const yaml::RISCVMachineFunctionInfo &>(MFI);
PFS.MF.getInfo<RISCVMachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
return false;
}