Files
clang-p2996/llvm/test/CodeGen/X86/vector-gep.ll
Matt Arsenault 4a36e96c3f RegAllocGreedy: Account for reserved registers in num regs heuristic
This simple heuristic uses the estimated live range length combined
with the number of registers in the class to switch which heuristic to
use. This was taking the raw number of registers in the class, even
though not all of them may be available. AMDGPU heavily relies on
dynamically reserved numbers of registers based on user attributes to
satisfy occupancy constraints, so the raw number is highly misleading.

There are still a few problems here. In the original testcase that
made me notice this, the live range size is incorrect after the
scheduler rearranges instructions, since the instructions don't have
the original InstrDist offsets. Additionally, I think it would be more
appropriate to use the number of disjointly allocatable registers in
the class. For the AMDGPU register tuples, there are a large number of
registers in each tuple class, but only a small fraction can actually
be allocated at the same time since they all overlap with each
other. It seems we do not have a query that corresponds to the number
of independently allocatable registers. Relatedly, I'm still debugging
some allocation failures where overlapping tuples seem to not be
handled correctly.

The test changes are mostly noise. There are a handful of x86 tests
that look like regressions with an additional spill, and a handful
that now avoid a spill. The worst looking regression is likely
test/Thumb2/mve-vld4.ll which introduces a few additional
spills. test/CodeGen/AMDGPU/soft-clause-exceeds-register-budget.ll
shows a massive improvement by completely eliminating a large number
of spills inside a loop.
2021-09-14 21:00:29 -04:00

214 lines
8.2 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=i686-linux -mcpu=corei7-avx | FileCheck %s
; RUN: opt -instsimplify -disable-output < %s
define <4 x i32*> @AGEP0(i32* %ptr) nounwind {
; CHECK-LABEL: AGEP0:
; CHECK: # %bb.0:
; CHECK-NEXT: vbroadcastss {{[0-9]+}}(%esp), %xmm0
; CHECK-NEXT: vpaddd {{\.?LCPI[0-9]+_[0-9]+}}, %xmm0, %xmm0
; CHECK-NEXT: retl
%vecinit.i = insertelement <4 x i32*> undef, i32* %ptr, i32 0
%vecinit2.i = insertelement <4 x i32*> %vecinit.i, i32* %ptr, i32 1
%vecinit4.i = insertelement <4 x i32*> %vecinit2.i, i32* %ptr, i32 2
%vecinit6.i = insertelement <4 x i32*> %vecinit4.i, i32* %ptr, i32 3
%A2 = getelementptr i32, <4 x i32*> %vecinit6.i, <4 x i32> <i32 1, i32 2, i32 3, i32 4>
%A3 = getelementptr i32, <4 x i32*> %A2, <4 x i32> <i32 10, i32 14, i32 19, i32 233>
ret <4 x i32*> %A3
}
define i32 @AGEP1(<4 x i32*> %param) nounwind {
; CHECK-LABEL: AGEP1:
; CHECK: # %bb.0:
; CHECK-NEXT: vextractps $3, %xmm0, %eax
; CHECK-NEXT: movl 16(%eax), %eax
; CHECK-NEXT: retl
%A2 = getelementptr i32, <4 x i32*> %param, <4 x i32> <i32 1, i32 2, i32 3, i32 4>
%k = extractelement <4 x i32*> %A2, i32 3
%v = load i32, i32* %k
ret i32 %v
}
define i32 @AGEP2(<4 x i32*> %param, <4 x i32> %off) nounwind {
; CHECK-LABEL: AGEP2:
; CHECK: # %bb.0:
; CHECK-NEXT: vpslld $2, %xmm1, %xmm1
; CHECK-NEXT: vpaddd %xmm1, %xmm0, %xmm0
; CHECK-NEXT: vpextrd $3, %xmm0, %eax
; CHECK-NEXT: movl (%eax), %eax
; CHECK-NEXT: retl
%A2 = getelementptr i32, <4 x i32*> %param, <4 x i32> %off
%k = extractelement <4 x i32*> %A2, i32 3
%v = load i32, i32* %k
ret i32 %v
}
define <4 x i32*> @AGEP3(<4 x i32*> %param, <4 x i32> %off) nounwind {
; CHECK-LABEL: AGEP3:
; CHECK: # %bb.0:
; CHECK-NEXT: pushl %eax
; CHECK-NEXT: vpslld $2, %xmm1, %xmm1
; CHECK-NEXT: vpaddd %xmm1, %xmm0, %xmm0
; CHECK-NEXT: movl %esp, %eax
; CHECK-NEXT: vpinsrd $3, %eax, %xmm0, %xmm0
; CHECK-NEXT: popl %eax
; CHECK-NEXT: retl
%A2 = getelementptr i32, <4 x i32*> %param, <4 x i32> %off
%v = alloca i32
%k = insertelement <4 x i32*> %A2, i32* %v, i32 3
ret <4 x i32*> %k
}
define <4 x i16*> @AGEP4(<4 x i16*> %param, <4 x i32> %off) nounwind {
; Multiply offset by two (add it to itself).
; add the base to the offset
; CHECK-LABEL: AGEP4:
; CHECK: # %bb.0:
; CHECK-NEXT: vpaddd %xmm1, %xmm1, %xmm1
; CHECK-NEXT: vpaddd %xmm1, %xmm0, %xmm0
; CHECK-NEXT: retl
%A = getelementptr i16, <4 x i16*> %param, <4 x i32> %off
ret <4 x i16*> %A
}
define <4 x i8*> @AGEP5(<4 x i8*> %param, <4 x i8> %off) nounwind {
; CHECK-LABEL: AGEP5:
; CHECK: # %bb.0:
; CHECK-NEXT: vpmovsxbd %xmm1, %xmm1
; CHECK-NEXT: vpaddd %xmm1, %xmm0, %xmm0
; CHECK-NEXT: retl
%A = getelementptr i8, <4 x i8*> %param, <4 x i8> %off
ret <4 x i8*> %A
}
; The size of each element is 1 byte. No need to multiply by element size.
define <4 x i8*> @AGEP6(<4 x i8*> %param, <4 x i32> %off) nounwind {
; CHECK-LABEL: AGEP6:
; CHECK: # %bb.0:
; CHECK-NEXT: vpaddd %xmm1, %xmm0, %xmm0
; CHECK-NEXT: retl
%A = getelementptr i8, <4 x i8*> %param, <4 x i32> %off
ret <4 x i8*> %A
}
define <4 x i8*> @AGEP7(<4 x i8*> %param, i32 %off) nounwind {
; CHECK-LABEL: AGEP7:
; CHECK: # %bb.0:
; CHECK-NEXT: vbroadcastss {{[0-9]+}}(%esp), %xmm1
; CHECK-NEXT: vpaddd %xmm1, %xmm0, %xmm0
; CHECK-NEXT: retl
%A = getelementptr i8, <4 x i8*> %param, i32 %off
ret <4 x i8*> %A
}
define <4 x i16*> @AGEP8(i16* %param, <4 x i32> %off) nounwind {
; Multiply offset by two (add it to itself).
; add the base to the offset
; CHECK-LABEL: AGEP8:
; CHECK: # %bb.0:
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vbroadcastss {{[0-9]+}}(%esp), %xmm1
; CHECK-NEXT: vpaddd %xmm0, %xmm1, %xmm0
; CHECK-NEXT: retl
%A = getelementptr i16, i16* %param, <4 x i32> %off
ret <4 x i16*> %A
}
define <64 x i16*> @AGEP9(i16* %param, <64 x i32> %off) nounwind {
; CHECK-LABEL: AGEP9:
; CHECK: # %bb.0:
; CHECK-NEXT: pushl %ebp
; CHECK-NEXT: movl %esp, %ebp
; CHECK-NEXT: andl $-32, %esp
; CHECK-NEXT: subl $160, %esp
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm3
; CHECK-NEXT: vbroadcastss 12(%ebp), %xmm5
; CHECK-NEXT: vpaddd %xmm3, %xmm5, %xmm3
; CHECK-NEXT: vmovdqa %xmm3, {{[-0-9]+}}(%e{{[sb]}}p) # 16-byte Spill
; CHECK-NEXT: vextractf128 $1, %ymm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa %xmm0, {{[-0-9]+}}(%e{{[sb]}}p) # 16-byte Spill
; CHECK-NEXT: vpaddd %xmm1, %xmm1, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa %xmm0, {{[-0-9]+}}(%e{{[sb]}}p) # 16-byte Spill
; CHECK-NEXT: vextractf128 $1, %ymm1, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa %xmm0, {{[-0-9]+}}(%e{{[sb]}}p) # 16-byte Spill
; CHECK-NEXT: vpaddd %xmm2, %xmm2, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa %xmm0, {{[-0-9]+}}(%e{{[sb]}}p) # 16-byte Spill
; CHECK-NEXT: vextractf128 $1, %ymm2, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa %xmm0, {{[-0-9]+}}(%e{{[sb]}}p) # 16-byte Spill
; CHECK-NEXT: vmovdqa 40(%ebp), %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa %xmm0, {{[-0-9]+}}(%e{{[sb]}}p) # 16-byte Spill
; CHECK-NEXT: vmovdqa 56(%ebp), %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa %xmm0, {{[-0-9]+}}(%e{{[sb]}}p) # 16-byte Spill
; CHECK-NEXT: vmovdqa 72(%ebp), %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa %xmm0, (%esp) # 16-byte Spill
; CHECK-NEXT: vmovdqa 88(%ebp), %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm2
; CHECK-NEXT: vmovdqa 104(%ebp), %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm1
; CHECK-NEXT: vmovdqa 120(%ebp), %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm0, %xmm0
; CHECK-NEXT: vpaddd %xmm0, %xmm5, %xmm0
; CHECK-NEXT: vmovdqa 136(%ebp), %xmm6
; CHECK-NEXT: vpaddd %xmm6, %xmm6, %xmm6
; CHECK-NEXT: vpaddd %xmm6, %xmm5, %xmm6
; CHECK-NEXT: vmovdqa 152(%ebp), %xmm7
; CHECK-NEXT: vpaddd %xmm7, %xmm7, %xmm7
; CHECK-NEXT: vpaddd %xmm7, %xmm5, %xmm7
; CHECK-NEXT: vmovdqa 168(%ebp), %xmm4
; CHECK-NEXT: vpaddd %xmm4, %xmm4, %xmm4
; CHECK-NEXT: vpaddd %xmm4, %xmm5, %xmm4
; CHECK-NEXT: vmovdqa 184(%ebp), %xmm3
; CHECK-NEXT: vpaddd %xmm3, %xmm3, %xmm3
; CHECK-NEXT: vpaddd %xmm3, %xmm5, %xmm3
; CHECK-NEXT: movl 8(%ebp), %eax
; CHECK-NEXT: vmovdqa %xmm3, 240(%eax)
; CHECK-NEXT: vmovdqa %xmm4, 224(%eax)
; CHECK-NEXT: vmovdqa %xmm7, 208(%eax)
; CHECK-NEXT: vmovdqa %xmm6, 192(%eax)
; CHECK-NEXT: vmovdqa %xmm0, 176(%eax)
; CHECK-NEXT: vmovdqa %xmm1, 160(%eax)
; CHECK-NEXT: vmovdqa %xmm2, 144(%eax)
; CHECK-NEXT: vmovaps (%esp), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, 128(%eax)
; CHECK-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, 112(%eax)
; CHECK-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, 96(%eax)
; CHECK-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, 80(%eax)
; CHECK-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, 64(%eax)
; CHECK-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, 48(%eax)
; CHECK-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, 32(%eax)
; CHECK-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, 16(%eax)
; CHECK-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 # 16-byte Reload
; CHECK-NEXT: vmovaps %xmm0, (%eax)
; CHECK-NEXT: movl %ebp, %esp
; CHECK-NEXT: popl %ebp
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: retl $4
%A = getelementptr i16, i16* %param, <64 x i32> %off
ret <64 x i16*> %A
}