Files
clang-p2996/mlir/lib/Dialect/IRDL/IRDLLoading.cpp
Daniil Dudkin f1a0402983 [mlir][irdl] Add irdl.attributes operation for defining named attributes
This commit introduces the `irdl.attributes` operation, which allows defining named attributes for the parent operation. Each attribute is defined with a name and a type constraint.

Example usage:
```
irdl.dialect @example {
  irdl.operation @attr_op {
    %0 = irdl.any
    %1 = irdl.is i64
    irdl.attributes {
      "attr1" = %0,
      "attr2" = %1
    }
  }
}
```
In this example the operation will expect an arbitrary attribute "attr1"
and an attribute "attr2" with value `i64`.

Reviewed By: math-fehr, Mogball

Differential Revision: https://reviews.llvm.org/D152618
2023-06-20 22:30:09 +03:00

502 lines
19 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===- IRDLLoading.cpp - IRDL dialect loading --------------------- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Manages the loading of MLIR objects from IRDL operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/IRDL/IRDLLoading.h"
#include "mlir/Dialect/IRDL/IR/IRDL.h"
#include "mlir/Dialect/IRDL/IR/IRDLInterfaces.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/ExtensibleDialect.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/SMLoc.h"
using namespace mlir;
using namespace mlir::irdl;
/// Verify that the given list of parameters satisfy the given constraints.
/// This encodes the logic of the verification method for attributes and types
/// defined with IRDL.
static LogicalResult
irdlAttrOrTypeVerifier(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<Attribute> params,
ArrayRef<std::unique_ptr<Constraint>> constraints,
ArrayRef<size_t> paramConstraints) {
if (params.size() != paramConstraints.size()) {
emitError() << "expected " << paramConstraints.size()
<< " type arguments, but had " << params.size();
return failure();
}
ConstraintVerifier verifier(constraints);
// Check that each parameter satisfies its constraint.
for (auto [i, param] : enumerate(params))
if (failed(verifier.verify(emitError, param, paramConstraints[i])))
return failure();
return success();
}
/// Verify that the given operation satisfies the given constraints.
/// This encodes the logic of the verification method for operations defined
/// with IRDL.
static LogicalResult
irdlOpVerifier(Operation *op, ArrayRef<std::unique_ptr<Constraint>> constraints,
ArrayRef<size_t> operandConstrs, ArrayRef<size_t> resultConstrs,
const DenseMap<StringAttr, size_t> &attributeConstrs) {
/// Check that we have the right number of operands.
unsigned numOperands = op->getNumOperands();
size_t numExpectedOperands = operandConstrs.size();
if (numOperands != numExpectedOperands)
return op->emitOpError() << numExpectedOperands
<< " operands expected, but got " << numOperands;
/// Check that we have the right number of results.
unsigned numResults = op->getNumResults();
size_t numExpectedResults = resultConstrs.size();
if (numResults != numExpectedResults)
return op->emitOpError()
<< numExpectedResults << " results expected, but got " << numResults;
auto emitError = [op] { return op->emitError(); };
ConstraintVerifier verifier(constraints);
/// Сheck that we have all needed attributes passed
/// and they satisfy the constraints.
DictionaryAttr actualAttrs = op->getAttrDictionary();
for (auto [name, constraint] : attributeConstrs) {
/// First, check if the attribute actually passed.
std::optional<NamedAttribute> actual = actualAttrs.getNamed(name);
if (!actual.has_value())
return op->emitOpError()
<< "attribute " << name << " is expected but not provided";
/// Then, check if the attribute value satisfies the constraint.
if (failed(verifier.verify({emitError}, actual->getValue(), constraint)))
return failure();
}
/// Check that all operands satisfy the constraints.
for (auto [i, operandType] : enumerate(op->getOperandTypes()))
if (failed(verifier.verify({emitError}, TypeAttr::get(operandType),
operandConstrs[i])))
return failure();
/// Check that all results satisfy the constraints.
for (auto [i, resultType] : enumerate(op->getResultTypes()))
if (failed(verifier.verify({emitError}, TypeAttr::get(resultType),
resultConstrs[i])))
return failure();
return success();
}
/// Define and load an operation represented by a `irdl.operation`
/// operation.
static WalkResult loadOperation(
OperationOp op, ExtensibleDialect *dialect,
DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> &types,
DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> &attrs) {
// Resolve SSA values to verifier constraint slots
SmallVector<Value> constrToValue;
for (Operation &op : op->getRegion(0).getOps()) {
if (isa<VerifyConstraintInterface>(op)) {
if (op.getNumResults() != 1)
return op.emitError()
<< "IRDL constraint operations must have exactly one result";
constrToValue.push_back(op.getResult(0));
}
}
// Build the verifiers for each constraint slot
SmallVector<std::unique_ptr<Constraint>> constraints;
for (Value v : constrToValue) {
VerifyConstraintInterface op =
cast<VerifyConstraintInterface>(v.getDefiningOp());
std::unique_ptr<Constraint> verifier =
op.getVerifier(constrToValue, types, attrs);
if (!verifier)
return WalkResult::interrupt();
constraints.push_back(std::move(verifier));
}
SmallVector<size_t> operandConstraints;
SmallVector<size_t> resultConstraints;
// Gather which constraint slots correspond to operand constraints
auto operandsOp = op.getOp<OperandsOp>();
if (operandsOp.has_value()) {
operandConstraints.reserve(operandsOp->getArgs().size());
for (Value operand : operandsOp->getArgs()) {
for (auto [i, constr] : enumerate(constrToValue)) {
if (constr == operand) {
operandConstraints.push_back(i);
break;
}
}
}
}
// Gather which constraint slots correspond to result constraints
auto resultsOp = op.getOp<ResultsOp>();
if (resultsOp.has_value()) {
resultConstraints.reserve(resultsOp->getArgs().size());
for (Value result : resultsOp->getArgs()) {
for (auto [i, constr] : enumerate(constrToValue)) {
if (constr == result) {
resultConstraints.push_back(i);
break;
}
}
}
}
// Gather which constraint slots correspond to attributes constraints
DenseMap<StringAttr, size_t> attributesContraints;
auto attributesOp = op.getOp<AttributesOp>();
if (attributesOp.has_value()) {
const Operation::operand_range values = attributesOp->getAttributeValues();
const ArrayAttr names = attributesOp->getAttributeValueNames();
for (const auto &[name, value] : llvm::zip(names, values)) {
for (auto [i, constr] : enumerate(constrToValue)) {
if (constr == value) {
attributesContraints[name.cast<StringAttr>()] = i;
break;
}
}
}
}
// IRDL does not support defining custom parsers or printers.
auto parser = [](OpAsmParser &parser, OperationState &result) {
return failure();
};
auto printer = [](Operation *op, OpAsmPrinter &printer, StringRef) {
printer.printGenericOp(op);
};
auto verifier =
[constraints{std::move(constraints)},
operandConstraints{std::move(operandConstraints)},
resultConstraints{std::move(resultConstraints)},
attributesContraints{std::move(attributesContraints)}](Operation *op) {
return irdlOpVerifier(op, constraints, operandConstraints,
resultConstraints, attributesContraints);
};
// IRDL does not support defining regions.
auto regionVerifier = [](Operation *op) { return success(); };
auto opDef = DynamicOpDefinition::get(
op.getName(), dialect, std::move(verifier), std::move(regionVerifier),
std::move(parser), std::move(printer));
dialect->registerDynamicOp(std::move(opDef));
return WalkResult::advance();
}
/// Get the verifier of a type or attribute definition.
/// Return nullptr if the definition is invalid.
static DynamicAttrDefinition::VerifierFn getAttrOrTypeVerifier(
Operation *attrOrTypeDef, ExtensibleDialect *dialect,
DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> &types,
DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> &attrs) {
assert((isa<AttributeOp>(attrOrTypeDef) || isa<TypeOp>(attrOrTypeDef)) &&
"Expected an attribute or type definition");
// Resolve SSA values to verifier constraint slots
SmallVector<Value> constrToValue;
for (Operation &op : attrOrTypeDef->getRegion(0).getOps()) {
if (isa<VerifyConstraintInterface>(op)) {
assert(op.getNumResults() == 1 &&
"IRDL constraint operations must have exactly one result");
constrToValue.push_back(op.getResult(0));
}
}
// Build the verifiers for each constraint slot
SmallVector<std::unique_ptr<Constraint>> constraints;
for (Value v : constrToValue) {
VerifyConstraintInterface op =
cast<VerifyConstraintInterface>(v.getDefiningOp());
std::unique_ptr<Constraint> verifier =
op.getVerifier(constrToValue, types, attrs);
if (!verifier)
return {};
constraints.push_back(std::move(verifier));
}
// Get the parameter definitions.
std::optional<ParametersOp> params;
if (auto attr = dyn_cast<AttributeOp>(attrOrTypeDef))
params = attr.getOp<ParametersOp>();
else if (auto type = dyn_cast<TypeOp>(attrOrTypeDef))
params = type.getOp<ParametersOp>();
// Gather which constraint slots correspond to parameter constraints
SmallVector<size_t> paramConstraints;
if (params.has_value()) {
paramConstraints.reserve(params->getArgs().size());
for (Value param : params->getArgs()) {
for (auto [i, constr] : enumerate(constrToValue)) {
if (constr == param) {
paramConstraints.push_back(i);
break;
}
}
}
}
auto verifier = [paramConstraints{std::move(paramConstraints)},
constraints{std::move(constraints)}](
function_ref<InFlightDiagnostic()> emitError,
ArrayRef<Attribute> params) {
return irdlAttrOrTypeVerifier(emitError, params, constraints,
paramConstraints);
};
// While the `std::move` is not required, not adding it triggers a bug in
// clang-10.
return std::move(verifier);
}
/// Get the possible bases of a constraint. Return `true` if all bases can
/// potentially be matched.
/// A base is a type or an attribute definition. For instance, the base of
/// `irdl.parametric "!builtin.complex"(...)` is `builtin.complex`.
/// This function returns the following information through arguments:
/// - `paramIds`: the set of type or attribute IDs that are used as bases.
/// - `paramIrdlOps`: the set of IRDL operations that are used as bases.
/// - `isIds`: the set of type or attribute IDs that are used in `irdl.is`
/// constraints.
static bool getBases(Operation *op, SmallPtrSet<TypeID, 4> &paramIds,
SmallPtrSet<Operation *, 4> &paramIrdlOps,
SmallPtrSet<TypeID, 4> &isIds) {
// For `irdl.any_of`, we get the bases from all its arguments.
if (auto anyOf = dyn_cast<AnyOfOp>(op)) {
bool has_any = false;
for (Value arg : anyOf.getArgs())
has_any &= getBases(arg.getDefiningOp(), paramIds, paramIrdlOps, isIds);
return has_any;
}
// For `irdl.all_of`, we get the bases from the first argument.
// This is restrictive, but we can relax it later if needed.
if (auto allOf = dyn_cast<AllOfOp>(op))
return getBases(allOf.getArgs()[0].getDefiningOp(), paramIds, paramIrdlOps,
isIds);
// For `irdl.parametric`, we get directly the base from the operation.
if (auto params = dyn_cast<ParametricOp>(op)) {
SymbolRefAttr symRef = params.getBaseType();
Operation *defOp = SymbolTable::lookupNearestSymbolFrom(op, symRef);
assert(defOp && "symbol reference should refer to an existing operation");
paramIrdlOps.insert(defOp);
return false;
}
// For `irdl.is`, we get the base TypeID directly.
if (auto is = dyn_cast<IsOp>(op)) {
Attribute expected = is.getExpected();
isIds.insert(expected.getTypeID());
return false;
}
// For `irdl.any`, we return `false` since we can match any type or attribute
// base.
if (auto isA = dyn_cast<AnyOp>(op))
return true;
llvm_unreachable("unknown IRDL constraint");
}
/// Check that an any_of is in the subset IRDL can handle.
/// IRDL uses a greedy algorithm to match constraints. This means that if we
/// encounter an `any_of` with multiple constraints, we will match the first
/// constraint that is satisfied. Thus, the order of constraints matter in
/// `any_of` with our current algorithm.
/// In order to make the order of constraints irrelevant, we require that
/// all `any_of` constraint parameters are disjoint. For this, we check that
/// the base parameters are all disjoints between `parametric` operations, and
/// that they are disjoint between `parametric` and `is` operations.
/// This restriction will be relaxed in the future, when we will change our
/// algorithm to be non-greedy.
static LogicalResult checkCorrectAnyOf(AnyOfOp anyOf) {
SmallPtrSet<TypeID, 4> paramIds;
SmallPtrSet<Operation *, 4> paramIrdlOps;
SmallPtrSet<TypeID, 4> isIds;
for (Value arg : anyOf.getArgs()) {
Operation *argOp = arg.getDefiningOp();
SmallPtrSet<TypeID, 4> argParamIds;
SmallPtrSet<Operation *, 4> argParamIrdlOps;
SmallPtrSet<TypeID, 4> argIsIds;
// Get the bases of this argument. If it can match any type or attribute,
// then our `any_of` should not be allowed.
if (getBases(argOp, argParamIds, argParamIrdlOps, argIsIds))
return failure();
// We check that the base parameters are all disjoints between `parametric`
// operations, and that they are disjoint between `parametric` and `is`
// operations.
for (TypeID id : argParamIds) {
if (isIds.count(id))
return failure();
bool inserted = paramIds.insert(id).second;
if (!inserted)
return failure();
}
// We check that the base parameters are all disjoints with `irdl.is`
// operations.
for (TypeID id : isIds) {
if (paramIds.count(id))
return failure();
isIds.insert(id);
}
// We check that all `parametric` operations are disjoint. We do not
// need to check that they are disjoint with `is` operations, since
// `is` operations cannot refer to attributes defined with `irdl.parametric`
// operations.
for (Operation *op : argParamIrdlOps) {
bool inserted = paramIrdlOps.insert(op).second;
if (!inserted)
return failure();
}
}
return success();
}
/// Load all dialects in the given module, without loading any operation, type
/// or attribute definitions.
static DenseMap<DialectOp, ExtensibleDialect *> loadEmptyDialects(ModuleOp op) {
DenseMap<DialectOp, ExtensibleDialect *> dialects;
op.walk([&](DialectOp dialectOp) {
MLIRContext *ctx = dialectOp.getContext();
StringRef dialectName = dialectOp.getName();
DynamicDialect *dialect = ctx->getOrLoadDynamicDialect(
dialectName, [](DynamicDialect *dialect) {});
dialects.insert({dialectOp, dialect});
});
return dialects;
}
/// Preallocate type definitions objects with empty verifiers.
/// This in particular allocates a TypeID for each type definition.
static DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>>
preallocateTypeDefs(ModuleOp op,
DenseMap<DialectOp, ExtensibleDialect *> dialects) {
DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> typeDefs;
op.walk([&](TypeOp typeOp) {
ExtensibleDialect *dialect = dialects[typeOp.getParentOp()];
auto typeDef = DynamicTypeDefinition::get(
typeOp.getName(), dialect,
[](function_ref<InFlightDiagnostic()>, ArrayRef<Attribute>) {
return success();
});
typeDefs.try_emplace(typeOp, std::move(typeDef));
});
return typeDefs;
}
/// Preallocate attribute definitions objects with empty verifiers.
/// This in particular allocates a TypeID for each attribute definition.
static DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>>
preallocateAttrDefs(ModuleOp op,
DenseMap<DialectOp, ExtensibleDialect *> dialects) {
DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> attrDefs;
op.walk([&](AttributeOp attrOp) {
ExtensibleDialect *dialect = dialects[attrOp.getParentOp()];
auto attrDef = DynamicAttrDefinition::get(
attrOp.getName(), dialect,
[](function_ref<InFlightDiagnostic()>, ArrayRef<Attribute>) {
return success();
});
attrDefs.try_emplace(attrOp, std::move(attrDef));
});
return attrDefs;
}
LogicalResult mlir::irdl::loadDialects(ModuleOp op) {
// First, check that all any_of constraints are in a correct form.
// This is to ensure we can do the verification correctly.
WalkResult anyOfCorrects = op.walk(
[](AnyOfOp anyOf) { return (WalkResult)checkCorrectAnyOf(anyOf); });
if (anyOfCorrects.wasInterrupted())
return op.emitError("any_of constraints are not in the correct form");
// Preallocate all dialects, and type and attribute definitions.
// In particular, this allocates TypeIDs so type and attributes can have
// verifiers that refer to each other.
DenseMap<DialectOp, ExtensibleDialect *> dialects = loadEmptyDialects(op);
DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> types =
preallocateTypeDefs(op, dialects);
DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> attrs =
preallocateAttrDefs(op, dialects);
// Set the verifier for types.
WalkResult res = op.walk([&](TypeOp typeOp) {
DynamicAttrDefinition::VerifierFn verifier = getAttrOrTypeVerifier(
typeOp, dialects[typeOp.getParentOp()], types, attrs);
if (!verifier)
return WalkResult::interrupt();
types[typeOp]->setVerifyFn(std::move(verifier));
return WalkResult::advance();
});
if (res.wasInterrupted())
return failure();
// Set the verifier for attributes.
res = op.walk([&](AttributeOp attrOp) {
DynamicAttrDefinition::VerifierFn verifier = getAttrOrTypeVerifier(
attrOp, dialects[attrOp.getParentOp()], types, attrs);
if (!verifier)
return WalkResult::interrupt();
attrs[attrOp]->setVerifyFn(std::move(verifier));
return WalkResult::advance();
});
if (res.wasInterrupted())
return failure();
// Define and load all operations.
res = op.walk([&](OperationOp opOp) {
return loadOperation(opOp, dialects[opOp.getParentOp()], types, attrs);
});
if (res.wasInterrupted())
return failure();
// Load all types in their dialects.
for (auto &pair : types) {
ExtensibleDialect *dialect = dialects[pair.first.getParentOp()];
dialect->registerDynamicType(std::move(pair.second));
}
// Load all attributes in their dialects.
for (auto &pair : attrs) {
ExtensibleDialect *dialect = dialects[pair.first.getParentOp()];
dialect->registerDynamicAttr(std::move(pair.second));
}
return success();
}